

Genetic Diversity within Alaskan Boletus Mushrooms

La Tia Jackson, lan C. Herriott, József Geml, Gary A. Laursen, D. Lee Taylor

Abstract

We analyzed the genetic differences within the collection of Boletus mushroom from the UAF Fungal Herbarium, representing samples from all over Alaska. Upon analyzing the DNA sequence from 18 samples, we found that most Alaskan *Boletus* are closely related to samples from the same species found in other parts of the world (clades 1,2,5,6,8,12). We also found that some species collected in other parts of the world were not found in our sample collection (clades 4,7,9,10,11). Finally, our results suggested that clade 3 on our phylogenetic tree is not represented among the GenBank sequences from other parts of the world and may be a genetic lineage endemic to Alaska.

Introduction

In this study we used DNA to distinguish the genetic affiliations within *Boletus* species and possibly identify new species within this genus in Alaska. Boletes are basidiomycete mushrooms that have a spongy layer of tubes on the bottom of their cap instead of gills. This layer in the boletes can peels away from the cap. There are many genera among the boletes including Suillus, Leccinum and Tylopilus, but the species in genus Boletus are some of the most well-known and prized mushrooms in the world. Boletes are mycorrhizal. Boletes will stain blue or greenish blue when bruised. The boletes' stalk is usually covered with veins. The spore color in boletes range from yellow to olive, brown, reddish brown, chocolate-brown or black. Boletes are mostly edible with only a few boletes that are poisonous. The geographical range for *boletus* is world wide and many occur frequently in North America (Arora). Which of the species exist in Alaska had not been determined using genetic methods before this study.

Materials and Methods

We extracted DNA using the SP Fungal Mini Prep Protocol. The changes to this protocol were minimal. First we ground the mushroom samples with two 3.2mm stainless beads in a ball mill. After that we then ran a gel to see if we had obtained any DNA product from our samples. The extraction was successful as seen in the figure below. We then went forward and did PCR for all of the samples, the results also showed success, as seen in figure 2 below. After that we did a PCR clean up using the standard protocol without any changes. Then we submitted the samples to the UAF DNA Core Lab and got the sequences for them, assembled reads in Sequencher, used ClustalW to build a sequence alignment. We then built a phylogenetic tree using the Maximum Likelihood algorithm in the program GARLI after we downloaded representative GenBank sequences to compare them with the sequence from the sample DNA we had extracted.

Figure 1. The DNA gel ran with all of the samples labeled with the numbers 1-20. Samples 1 and 20 are DNA ladder.

Figure 2. the PCR gel ran with all of the samples lableled with numbers 1-19. Sample 1 is our ladder.

Results

Figure 1 (Above). Maximum Likelihood t Alaskan samples (highlighted) compared with the GenBank sequences. Clades are numbered at the "nodes," and numbers below nodes are the bootstrap support values (out of 100).

4. Photo of Dr. Larsen's herbarium where we obtained the Alaskan samples from.

LJ4_GAL4137

LJ8_GAL8536

LJ6_GAL13745

LJ9_GAL13746

LJ11_GAL14186

LJ13_GAL18047

LJ8_GAL14283

Figure 6. A photo of *B. campestris*

tus_citrinovire	
tus_citrinovire	/
tus_spadiceus	/
us_spadiceus	

	DQ066407_Boletus_spadiceus	Europe
101	DQ066397_Boletus_citrinovirens	Europe
	DQ066410_Boletus_spadiceus	Europe
	DQ384578_Boletellus_mirabilis	Europe
	AJ419187_Boletus_impolitus	Spain
	DQ131632_Xerocomus_subtomentosus	Europe
	AJ889931_Boletus_pruinatus	Europe
	AM087271_Xerocomus_pruinatus	Europe
	AJ889932_Boletus_pruinatus	Europe
	AY372283_Boletus_dryophilus	CA, U.S.A.
	AY372286_Boletus_dryophilus	CA, U.S.A.
	AJ419223_Xerocomus_chrysenteron	Spain
	AJ496595_Boletus_erythropus	Spain
	DQ131634_Boletus_erythropus	Europe
	DQ131633_Boletus_erythropus	Europe
	AJ889928_Boletus_calopus	Europe
	DQ679806Boletus_calopus	Europe
	DQ407260_Boletus_magnificus	China
	DQ407263_Boletus_magnificus	China
	DQ407253_Boletus_speciosus	China
	AJ419189_Boletus_rhodoxanthus	Spain
	AJ889930_Boletus_luridus	Europe
	AM087270_Xerocomus_badius	Europe
	DQ534567_Boletus_satanas	Ma. U.S.A.
	DQ131627_Boletus_pinophilus	Europe
	DQ679803_Boletus_pinophilus	Europe
	DQ131628_Boletus_pinophilus	Europe
	DQ131626_Boletus_pinophilus	Europe
	AY680986_Boletus_persoonii	Europe
	EF517300_Boletus_edulis	Czeck Rep.
	DQ131630_Boletus_violaceofuscus	Europe
	DQ131609_Boletus_aestivalis	Europe
	DQ397948_Boletus_edulis	China
	DQ397949_Boletus_edulis	China
	DQ131619_Boletus_aereus	Europe
	DQ131620_Boletus_aereus	Europe

Identification on Tree

DQ066405_Boletus_citrinovirens

Figure 2. Table of GenBank sequences.

DQ131618_Boletus_aereus

AB284450_Suillus_pictus

DQ822826_Suillus_brevipes

AJ419193_Chalciporus_piperatus

e	Morohplogical ID	GenBank Affiliations	Clade	Collection Date	Location
	Boletus tomentosus	Boletus citrinovirens*	1	8.07.1994	NorthWest, AK
	Boletus piperatus	Boletus citrinovirens*	1	7.23.2005	Interior AK
	Boletus subtomentosus	Boletus citrinovirens*	1	8.15.2000	Kobuk, AK
	Boletus mirabilis	Boletus mirabilis	2	9.02.2001	SouthEast, AK
	Boletus mirabilis	Boletus mirabilis	2	8.11.1989	SouthEast, AK
	Boletus longicurrapes	no close ITS matches	3	1989	SouthEast, AK
	Boletus subglabripes	no close ITS matches	3	7.13.1998	SouthCentral, AK
	Boletus subglabripes	no close ITS matches	3	7.25.1990	SouthEast, AK
	Boletus subglabripes	no close ITS matches	3	8.13.1998	Interior, AK
	Boletus erythropus	Boletus erythropus	5	7.29.1998	SouthCentral, AK
	Boletus erythropus	Boletus erythropus	5	7.30.1992	Interior AK
	Boletus coniferarum	B. coniferarum and B. calopus	6	7.30.1992	Interior AK
	Boletus edulis	Boletus edulis	11		NorthWest, AK
	Boletus piperatus	Chalciporus piperatus	12	7.21.2005	AK

Figure 3. Table of Alaskan sequences generated in this study.

Location

Europe

Europe

Spain

Japan

CA, U.S.A.

•Clade 3 is composed of samples only from Alaska. None of the sequences obtained from GenBank are closely related. These were morphologically identified as *B. subglabripes*. "*B. subglabripes*" is in GenBank, but only Large Subunit gene, not Internally Transcribed Spacer gene (reference 2) so comparison is not possible to determine if morphological species attribution is the same or

•Clade 4 is a group of GenBank sequences (*B. pruinatus*, *B. dyrophilus and X. chyresente*) that did not show significant amounts of similarity to the samples I extracted. This appears to be a group that is found in Europe and California, but has not been sampled in Alaska.

•Clade 5 is closely related to *B. erythropus* with my sequences LJ6_GAL8536 and LJ8_GAL13745, and represents a species found in Europe and Southcentral and interior Alaska.

•Clade 6 are closely related to *B. calopus* from Europe with my sequence LJ9 13746 from interior Alaska.

•Clade 7 are the GenBank sequences (B. magnificus, B. speciosus, B. rhodoxanthus, B. luridus, X. badius and B. satanas) that did not show significant amounts of similarity to Alaskan samples.

•Clade 8 is composed of GenBank sequences attributed to B. persoonii and B. pinophilius are closely matched up with my sequence LJ11_GAL4186 however, that sequence most closely grouped up with *B. edulis* from Northwest Alaska. This is the famous King Bolete.

•Clade 9 is composed of GenBank sequences *B. violaceofus* which did not show significant amounts of similarity to any Alaskan samples.

•Clade 10 are the GenBank sequences *B. aestivalis* that did not show significant amounts of similarity to the samples I extracted. There are two sequences attributed to B. edulis among the GenBank sequences that are probably misidentifications.

•Clade 11 are the GenBank sequences for *B. aereus* that did not show significant amounts of similarity to the Alaskan samples.

•Clade 12 is composed of theGenbank sequence AJ419193_ Chalciporus_piperatus and my sample LJ13_GAL 18047 which was originally identified as *B. piperatus* mean the exact same thing. *Chalciporus* was the first naming of the genus and *Boletus* is the recent naming.

Arora, D. (1986). Mushrooms demystified: A comprehensive guide to un fleshy fungi. Berkeley: Ten Speed Press. 959 pp.

Figure 7. A mycorrhlzal root (from previous study)

Discussion

•Clade 1 is composed of Alaskan samples from the interior and Northwest and samples from Europe. Although the species names do not match up they are genetically very similar, and *B. citrinovirens* is thought to be in what is called the subtomentosus group.

•Clade 2 is composed of Alaskan samples from Southeast Alaska and GenBank samples from Europe, both identified as *Boletus mirabilis*.

Bibliography

Bruns, T.D., Szaro, T.M., Gardes, M., Cullings, K.W., Pan, J.J., Taylor, D.L., Horton, T.R., Kretzer, A., Garbelotto, M. and Li, Y. TITLE A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis JOURNAL Mol. Ecol. 7 (3), 257-272 (1998)

Acknowledgments

I thank Dr. Sue Hills for her help and feedback. I would also like to express gratitude to Jack MacFarland and Keane Richards for also helping me on this project and answering my questions.

This publication was made possible by Grant Number 5P20RR016466 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH).

Contact info.

For more information please send an E-mail at: latia_jackson@hotmail.com