UAF & DMS SYLLABUS GUIDELINES FOR MATH152X – TRIGONOMETRY

Across all sections of Trigonometry offered by UAF campuses (delivered in-person or online), all syllabi must satisfy the following requirements.

1. General guidelines set by UAF; follow this link to UAF syllabus requirements

2. Content
 - *Precalculus* by Stewart, Redlin, and Watson, 7th edition is the textbook adopted by DMS and must be used for the course.
 - All of the required (r) sections from the textbook listed below must be covered. Optional (o) topics should be considered as time permits.
 - Chapter 5: 5.1-5.5 (r), 5.6 (o)
 - Chapter 6: 6.1-6.6 (r)
 - Chapter 7: 7.1-7.5 (r)
 - Chapter 8: 8.1 (r), 8.2 (o), 8.3 (o)
 - In addition, you need to incorporate a section on solving trigonometric inequalities. If you would like a list of suggested problems, you may request a PDF on this topic by contacting DMS.
 - Review of relevant precalculus material (equation solving, graphing) is strongly recommended.

3. Types of assessments
 - **Exams**
 - at least two midterm exams during the semester
 - exams must be timed, proctored, closed book, closed notes, and no calculators
 - exams must be majority written answer (not multiple choice)
 - exams must be pencil-and-paper exams, written and graded by a faculty member
 - exams should not be reused from previous semesters, limited reuse of edited problems is acceptable
 - **Final exam**
 - must be cumulative and representative of the entire course
 - any optional (o) section that you choose to cover should not be on the final exam
 - must include problems from each of the Assessment Criteria listed on the next page
 - students are expected to know on their own (no formulas provided on test for the following):
 * definition of all trigonometric functions
 * periodic properties (cos(\(x + 2\pi\)), etc.) and negative angle formulas (cos(\(-x\)), etc.)
 * cofunction identities (cos(\(\frac{\pi}{2} - x\)), etc.)
 * addition and subtraction formulas for sine and cosine (sin(a + b), etc.)
 * double-angle and half-angle formulas for sine and cosine
 - **Other Assessed Work**
 - instructors should provide written feedback to students approximately weekly throughout the semester.
 This can be through humanly-graded assignments or email correspondence
 - students must have a mechanism for estimating their current grade in the course
 - there must be human feedback prior to the first exam

4. Grading Policy
 - The syllabus must include a grading scale in some form.
 - Plus/minus grading is at the discretion of the instructor, but must be stated explicitly.
 - The final grade in this course must adhere to the following:

<table>
<thead>
<tr>
<th>Written Assessed Work</th>
<th>At least 15% and at most 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Assessed Work</td>
<td>At most 15%</td>
</tr>
<tr>
<td>Midterm Exams</td>
<td>At least 40%</td>
</tr>
<tr>
<td>Comprehensive Final Exam</td>
<td>At least 20%</td>
</tr>
</tbody>
</table>
Assessment criteria

Final exams should contain problems that demonstrate the students’ acquired knowledge of the following topics.

- Angle measures; mostly radians but some degrees; unit circle representation.
- Values of trigonometric functions of the common angles; including basic equation solving e.g. \(\sin x = \sqrt{3}/2 \).
- Graphs of the trigonometric functions – including domain, range, symmetry, intercepts, amplitude, phase shift.
- Definition of the trigonometric functions; for example, find all associated trigonometric functions given a point’s coordinates or given \(\sin \theta = 3/5 \) and a quadrant.
- Identities; verifying identities. As stated on the front page, the following formulas may not be provided to the students on the final exam:
 - definition of all trigonometric functions
 - periodic properties (\(\cos(x + 2\pi) \), etc.) and negative angle formulas (\(\cos(-x) \), etc.)
 - cofunction identities (\(\cos(\frac{\pi}{2} - x) \), etc.)
 - addition and subtraction formulas for sine and cosine (\(\sin(a + b) \), etc.)
 - double-angle and half-angle formulas for sine and cosine
- Inverse trigonometric functions. Problems from each of:
 - evaluating inverse trigonometric functions
 - evaluating composition of trigonometric and inverse trigonometric functions (both orders)
 - domain and properties of the graphs of inverse trigonometric functions (full graphing ability is only expected for \(\arctan x \))
- Trigonometric equations and inequalities. Include both general and specific solution sets; solutions should include both common angles and inverse trigonometric notation. Problems at least from each of:
 - linear trigonometric equation with argument \(cx \), \(c \neq 1 \)
 - equations involving either a quadratic, factoring, and/or requiring the use of identities
 - basic inequality e.g. \(2 \cos x - 1 \geq 0 \)
- Polar coordinates; conversion of points and equations.
- Applications. Include problems from each of the following:
 - right angle trigonometry – including angle of elevation/depression
 - laws of sine and cosine; for example, navigation, bearing, etc.
 - arc length, area of sector, or linear/angular velocity