Children and Hearing Protection:
What is Available and Is It Used?

E-A-R 06-08/HP

E. H. Berger, M.S.

E•A•R / Aearo Technologies
E•A•RCAL™ Laboratory
7911 Zionsville Road
Indianapolis, IN 46268-1657
phone: 317-692-1111
eberger@compuserve.com
www.e-a-r.com/hearingconservation

October 18, 2006

Version 1.1

Invited Paper Presented at
Noise-Induced Hearing Loss in Children at Work & Play,
Covington, KY, October 19-20, 2006
Abstract
For many noise exposures, the only feasible auditory defense is a hearing protection device (HPD); for many other exposures such devices are desirable or are the most convenient protective strategy. Their use and application in adult populations is well understood and documented, but in children and teenagers, such is not the case. This paper will summarize available data on HPD utilization and effectiveness in younger age groups and suggest if and how utilization could or should be improved. Considerations for measuring hearing protector effectiveness in children will be explored. HPDs will be described that are available for groups from neonatal infants in the hospitals, to youngsters accompanying their parents during noise-hazardous activities such as target shooting, hunting, or loud public events, and for teenagers involved in part-time noisy occupations. Safe listening is a habit that should be instilled at an early age and this paper will provide tools to help make that a reality.

Introduction
Noise is arguably one of the most pervasive environmental pollutants faced by children and adults. Virtually everything we do has noise as a by product and in many instances the noise is either annoyingly loud and/or hazardous to our hearing. Examples of the noisy activities that our children partake in, during which the use of hearing protection may be either advisable or absolutely necessary, are listed below.

- Shooting guns - target shooting, skeet, hunting
- Loud public events - concerts, night clubs, auto racing, tractor pulls, sporting events, etc.
- Using power tools – saws, routers, power sanders, etc.
- Yard work – mowing, leaf blowing, chain saws, edging, etc.
- Farm work – tractors, combines, feed areas, grain dryers, etc.
- Recreational vehicles – motorcycles, 4-wheelers, snowmobiles
- Educational settings – music performance, music rehearsal, vocational schools
- Noisy part-time jobs

For an exhaustive list of over 1700 different noise level measurements see the Noise Navigator™ database by Berger, et al. (2006).

In spite of the pervasiveness of noise in society, the consumer market for hearing protection would appear to be small. Estimates by Aearo Technologies suggest that 90% of the market is accounted for occupational and military sales, with the remaining 10% disproportionately directed towards the adult consumer market in the U. S., though in Europe the balance between the adult and children's consumer markets appears more equal.

Use Rates of Hearing Protection
When one examines whether or not children wear hearing protection devices (HPDs) at times that are warranted, the answer is disappointing. Data from 23 studies published between 1985 and 2006 are summarized in Table I and presented graphically in Slides 5 and 6 in the accompanying PowerPoint presentation. Not only are use rates low, typically averaging less than 25%, but note especially in Slide 4 the low use rates by instructors in vocational schools, who should be setting good examples in the otohazardous environments in which they teach on a daily basis.

Anthropometry
Few data appear in the literature on earcanal size, especially for younger populations. The papers that deal with such issues normally look at earcanal length and volume, whereas the important parameter for fitting earplugs is the diameter of the earcanal. Earplugs unlikely to be inserted deeply enough that the length of the earcanal becomes an issue. In Slide 6 data are presented from my laboratory on over 1000
subjects describing earcanal diameter and head width (using bitragion breadth as the relevant measurement). With the exception of the youngest age group in which there were only 10 subjects, the other groups are well populated. The data suggest, Ballachanda’s (1995) observation that the shape and size of the earcanal and pinna attain adult scale by age 7 - 9 notwithstanding, that earcanal size and head width increase as a function of age up through the early 20s.

Measuring Performance

A review of the literature revealed no data that I could discover on the attenuation of HPDs for children. This probably stems from the difficulty of working with children to take measurements according to the standard paradigms, as well as the fact that the exact magnitude of children’s attenuation is normally not a critical factor.

In spite of the common supposition that children’s earcanals are softer than mature ears, Pirzanski and Berge (2005) found that the reverse was true. They drew their conclusion by comparing ear impressions on 80 ears from children less than 12 years of age (out of 1486 earcanals in the total study including all ages), made with both high-viscosity and low-viscosity silicones in the same earcanal. The greater the difference between the two sets of impressions, the softer the earcanal was presumed to be. By this measure, children’s earcanals were the firmest. They also examined closed-jaw and open-jaw impressions and determined that children’s earcanals were less affected by mandibular motion. These two observations suggest that children’s earcanals, if they can be fitted by a correctly sized earplug, are likely to be similarly protected as their adult counterparts, perhaps even more so.

An issue of much greater concern is use rates and percent wearing time. Much more would be gained if these rates could be increased than if the actual attenuation of the devices were improved. For example, using the commonly accepted 3-dB exchange rate one can compute the attenuation of a 25-dB plug, if it is not worn all of the time in noise. Using it 90% of the time reduces its effectiveness to only 10 dB and if it is worn only 75% of the time the effectiveness diminishes to 6 dB, a reduction of 19 dB. Clearly this area is ripe for improvement.

Slides 7 and 8 provide an overview of the situation.

Hearing Protector Recommendations for Various Age Groups

Few products are specifically targeted towards children or younger age users, but a number of fine products designed for adults that are either available in multiple sizes or are sized smaller to begin with, provide options to fit children with hearing protection. Slides 9 through 18 provide specific recommendations with comments about the pros and cons of the various devices suggested.

Parents should trial the products on their kids to see what fits and is comfortable. Use the fittings tips found in Berger (1988) to determine when products are well fitted and providing good sound blockage. Although all products are labeled with a Noise Reduction Rating (NRR) per the U. S. Environmental Protection Agency (1979), the numbers are based on optimum fitting in idealistic conditions and provide little useful guidance to either adult or younger-age users. Simply use the NRR as a guide that the device was designed for and tested for noise reduction. Use the guidance in Berger (1988) and working closely with your child to establish if the device fits well and blocks sound. Equally, or perhaps more important, than the amount of noise the device can block is that it be fitted well and always worn when in hazardous noise, as discussed in the preceding section.
Conclusions
Though products are available that can protect children’s hearing when they are exposed to noise, the existence of such products is only a small part of the solution to the problem. As with adult users of safety products it is key that children be taught an awareness of the importance of good hearing, the hazards of noise, and be provided techniques to determine when their ears may be at risk. Furthermore they must be given training on the means to protect themselves, either by reducing the frequency, severity, and/or duration of their exposures, or by wearing hearing protection. This can be accomplished, but it requires skill and diligence. The good news is that at least a few of the existing studies reviewed in this report suggest that use trends may be improving and that training and motivation can be effective.

References

For additional reference materials on hearing and hearing protection please visit me on the web at: www.e-a-r.com/hearingconservation
Table 1: Twenty-three (23) studies conducted from 1985 through 2006 providing estimates of use rates of HPDs.

The categories are: students, teachers, recreational/music, farming, and lawn maintenance.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Type</th>
<th>Subjects</th>
<th>%Wearers</th>
<th>%Plugs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horrild et al.</td>
<td>1999</td>
<td>Austria</td>
<td>apprentices, age 15-18</td>
<td>41470</td>
<td>18</td>
<td></td>
<td>data from 1977; pref. for muffs may be due to varying noise exposures where muff use is easier</td>
</tr>
<tr>
<td>Bennett et al.</td>
<td>1999</td>
<td>US</td>
<td>2nd grade</td>
<td>116</td>
<td>34</td>
<td></td>
<td>asked re use with respect to lawn mowing, shooting, monster truck races, and snow mobile</td>
</tr>
<tr>
<td>Chemali et al.</td>
<td>1996</td>
<td>US</td>
<td>4th grade</td>
<td>45</td>
<td>15</td>
<td></td>
<td>re use with respect to lawn mowing, shooting, monster truck races, and snow mobile</td>
</tr>
<tr>
<td>Chemali et al.</td>
<td>1991</td>
<td>US</td>
<td>3rd/4th grade</td>
<td>12</td>
<td>50</td>
<td></td>
<td>when shooting firearms</td>
</tr>
<tr>
<td>Lafrance et al.</td>
<td>1997</td>
<td>US</td>
<td>high-school students</td>
<td>426</td>
<td>10</td>
<td></td>
<td>used HPDs “while in loud sound environments”</td>
</tr>
<tr>
<td>Lass et al.</td>
<td>1987</td>
<td>US</td>
<td>students age 11-15</td>
<td>296</td>
<td>13</td>
<td>100</td>
<td>“do you ever wear earplugs to protect your hearing,” survey given to students in science class</td>
</tr>
<tr>
<td>Lass et al.</td>
<td>1987</td>
<td>US</td>
<td>students age 15-16</td>
<td>101</td>
<td>16</td>
<td>100</td>
<td>survey given to students in health classes; rate is those saying they “never wore earplugs to protect hearing”</td>
</tr>
<tr>
<td>Lowie</td>
<td>1989</td>
<td>US</td>
<td>high-school students</td>
<td>1520</td>
<td>15</td>
<td>100</td>
<td>“do you ever wear earplugs to protect your hearing”</td>
</tr>
<tr>
<td>Nadler</td>
<td>1995</td>
<td>US</td>
<td>high school vocational classroom</td>
<td>364</td>
<td>6</td>
<td></td>
<td>values represents those who sometimes wore HPDs</td>
</tr>
<tr>
<td>Peppard et al.</td>
<td>1992</td>
<td>US</td>
<td>7th grade</td>
<td>4121</td>
<td>0</td>
<td></td>
<td>subsequent to 4-session educational program with teacher support</td>
</tr>
<tr>
<td>Woodford et al.</td>
<td>1983</td>
<td>US</td>
<td>agle students, grade 9-12</td>
<td>127</td>
<td>4</td>
<td></td>
<td>exposures included shooting, going, fireworks, lawn care and music; 29 students identified with NHL</td>
</tr>
<tr>
<td>Zeigler et al.</td>
<td>2001</td>
<td>US</td>
<td>college music majors</td>
<td>246</td>
<td>3</td>
<td></td>
<td>always wear HPDs around machinery and guns, increased to 22% w/sometime included</td>
</tr>
<tr>
<td>Allonen-Aili</td>
<td>1990</td>
<td>US</td>
<td>vocational teachers</td>
<td>21</td>
<td>65</td>
<td></td>
<td>reported number is while playing music; 6% were HPDs for other loud noises - rock concert, lawn mower etc.</td>
</tr>
<tr>
<td>Hoakien et al.</td>
<td>1991</td>
<td>US</td>
<td>industr. arts teachers</td>
<td>270</td>
<td>5</td>
<td></td>
<td>5% defined as occasional use; 8% of students resisted using HPDs; HPDs required 1/2 as often as other safety</td>
</tr>
<tr>
<td>Flandre</td>
<td>1985</td>
<td>US</td>
<td>industr. arts teachers</td>
<td>146</td>
<td>3</td>
<td></td>
<td>never use = 62%</td>
</tr>
<tr>
<td>Laitinen et al.</td>
<td>2001</td>
<td>Finland</td>
<td>youth avg age = 18</td>
<td>1071</td>
<td>5</td>
<td></td>
<td>percent use is avg of often and always, and avg for across playing music, discos, sports wh/mus, concerts</td>
</tr>
<tr>
<td>Latxlo</td>
<td>1990</td>
<td>Canada</td>
<td>youth avg age = 18</td>
<td>1390</td>
<td>1</td>
<td></td>
<td>percent use is avg of often and always, and avg across playing music, discos, sports wh/mus, concerts</td>
</tr>
<tr>
<td>Bogocho et al.</td>
<td>2005</td>
<td>Canada</td>
<td>large rock concerts</td>
<td>2044</td>
<td>3</td>
<td></td>
<td>85% experienced tinnitus post concert; 42% said would wear earplugs if provided free at door</td>
</tr>
<tr>
<td>Merlot et al.</td>
<td>2003</td>
<td>Switzerland</td>
<td>music festival</td>
<td>981</td>
<td>5</td>
<td></td>
<td>avg age = 28, 34% used plugs sometimes, avg age = 35; 10% of respondents found sound too loud</td>
</tr>
<tr>
<td>Widin et al.</td>
<td>2006</td>
<td>Sweden</td>
<td>students age 17-21</td>
<td>179</td>
<td>61</td>
<td></td>
<td>measured use at concerts; those with “worry” about noise and tinnitus more like to be wearers (see prior line) US students viewed noise more positively than Swedish students</td>
</tr>
<tr>
<td>Erste et al.</td>
<td>1989</td>
<td>US</td>
<td>farming</td>
<td>543</td>
<td>9</td>
<td></td>
<td>high-school age workers</td>
</tr>
<tr>
<td>Hnoblech et al.</td>
<td>1990</td>
<td>US</td>
<td>farming</td>
<td>375</td>
<td>23</td>
<td></td>
<td>baseline data for 7th - 9th grade students</td>
</tr>
<tr>
<td>Woods and Zimmer</td>
<td>1986</td>
<td>US</td>
<td>lawn maintenance</td>
<td>87</td>
<td>8</td>
<td></td>
<td>same students 3 years later after intervention; free HPDs, audiograms, mailing to students, most useful</td>
</tr>
</tbody>
</table>

Note: %Wearers = percentage of noise-exposed subjects wearing HPDs by criterion of study, usually wearing devices 100% of time. See comments for more info.

Note: %Plugs = percentage of wearers of HPDs who use earplugs as opposed to earmuffs.
Children and Hearing Protection: What is Available and Is It Used?

Elliot H. Berger
Senior Scientist, Auditory Research
Aearo Company

When Should Hearing Protection be Worn

- Shooting guns - target shooting, skeet, hunting
- Using power tools - saws, routers, power sanders, etc.
- Yard work - mowing, leaf blowing, chain saws, edging, etc.
- Farm work - tractors, combines, feed areas, grain dryers, etc.
- Loud public events - concerts, night clubs, auto racing, tractor pulls, sporting events (?), etc.
- Recreational vehicles - motorcycles, 4-wheelers, snowmobiles
- Educational settings - music performance/rehearsal, vocational
- Noisy part-time jobs

Market Estimates

- Occupational and Military hearing protection market – 90%
- Consumer, adult – 9% U. S. (6% Europe)
- Consumer, children – 1% U. S. (4% Europe)

HPD Use Rates in Educational Settings

HPD Use Rates in Music and Other Settings

Earcanal Diameter and Bitrargion Breadth vs. Age

Females [N=448] Males [620]
Measuring Performance (I)

- No data (?) in the literature on attenuation in children
- The Gold Standard in measuring attenuation is REAT (Real-ear attenuation at threshold)
- Difficult to implement with children
- Other methods are available but they too are difficult to implement in the smaller earcanals of younger children
- Pirzanski & Berge study suggests children’s canals are firmer and less affected by mandibular motion

Measuring Performance (II)

- Since children’s exposures do not normally require maximum levels of attenuation, precise estimates of attenuation are not critical
- % age use time is the much more critical parameter; increasing use rates to 100% would provide substantial gains in effective protection
- If attenuation data for children age 5 and up are needed, best approach is REAT evaluations with surrogates - teenagers (15 – 18), especially those with smaller earcanals

Earplugs for Ages 5 – 15

Foam
- Classic® Small vinyl foam earplug
- E-Z-Fit® polyurethane foam earplug
- Notes:
 - Tends to be most comfortable
 - Takes more time to insert than other styles
 - May require parental assistance because of difficulty in rolling down and insertion
 - Corded versions available to reduce loss of plugs
 - Classic Small can be used for swimming

Premolded
- Howard Leight Fusion® earplugs (small)
- North Com-Fit™ earplugs (small)
- Swimming E•A•R® Plugs – Youth
- Notes:
 - Easier to insert for kids, but less comfortable than foam
 - Caution: careful removal is necessary
 - Corded versions available for Fusion and Com-Fit
 - Can be used for swimming

Malleable and Custom
- Malleable silicone pellets – Mack’s® Pillow Soft® Earplugs
- Custom earmolds
- Notes:
 - Pellets rely on stickiness and cap canal at entrance, thus poor retention and large occlusion effect
 - Custom molds comfortable, but can be difficult to make and may need regular replacement as children grow

Canal Caps
- 3M™ Banded Hearing Protector 1310 E•A•R Caps® semi-inserts
- Notes:
 - Easy to use and store around neck
 - Band can be bumped, making noise and/or losing seal
 - May be too large for smaller ears
 - Less attenuation and more occlusion effect
 - Visually apparent, may be positive or negative
Earmuffs for Ages 5 - 15

- Economy E•A•R® Muff
- Peltor Junior™ earmuff

Notes:
- Easy to use
- Can get in the way
- Visually apparent – may be positive or negative
- No small-cupped muffs on market today (?)

HPDs for Children Under 5

- No products specific to this age range
- Malleable plugs recommend against tearing in half
- Risk of swallowing or choking
- Use corded plugs and pin to child’s clothing
- Use earmuffs, but …

A European Experience

When heads get really small

Infants and Newborns

- Natus MiniMuffs® adhesive earmuffs

Notes
- About 10-dB of noise reduction
- Suggested for NICUs, and during use of ventilators, MRIs, or transport

Concept Development