Synthetic pathways of platinum(IV) 2-phenylpyridine halogenic derivatives as potential anticancer agents

Introduction Ever since the discovery of cisplatin's inhibition of sarcoma 180 cells in mice, cisplatin has been a staple anticancer drug.¹ However, literature has cited cisplatin resistance in sarcoma 180 cells in mice.² Furthermore, the usage of this drug is held back by its severe side effects.³ Thus, further development of the field of platinum matallochemical anticancer research is needed. One promising avenue for this research is 2-phenylpyridine halogenic derivatives like Pt(IV)(ppy)2Cl2, which has demonstrated anticancer properties.⁴ Therefore, I decided to try to synthesize halogenic variations of the form Pt(ppy)2X2 with the intention of testing and comparing the different derivatives' anticancer properties. The scope of this poster and my research up until now has been to develop a synthetic pathway to create variations with iodine.

				Path B			
The Compounds	Compound	Identity	Characteristics				
During my research, I dealt with multiple intermediates	Compound o	nd o K2PtCl4 nd 1 Pt(ppy)(ppyH)Cl	Red powder; sl. sol. H2O/tert-butanol; polymerizes quickly in H2O				
and multiple pathways. For conciseness, I have labeled	Compound 1		Yellow powder; v. sol. DMF; sl. sol. THF, acetone; sol. CHCl3; insol. methanol				
these compounds according to overall order of synthesis (see "Synthesis" section)	Compound 2	Pt(ppy)(ppyH)I	Dull yellow/tan brown powder; v. insol. H2O; insol. methanol; sl. sol. acetone				
Characteristics reported to the right were attained by my	Compound 3	Pt(ppy)2I2	Tan; sol. THF; v. sl. sol. DMF, CHCl3, benzene; insol. propanol, methanol, pentane, H2O				
experimentation. Of particular interest is	Compound 4	Pt(ppy)2ICl	Unknown, not found in literature.	10 9 8 7 6 [ppm] 9 8 7 6 [ppm]			
Compound 4, the synthesis and properties of which has	Compound 5	Pt(ppy)(ppyH)Br	Unknown	Aromatic Region Aromatic Region			
not yet reported in the scientific literature. Future research is to include further halogenic variation of the compounds. Methods Synthesis occ pathways. Identities of product ¹⁹⁵ Pt NMR. Confirmation of a between spectra of reactants an Synthesis K ₂ PtCl ₄ + 2x	Table 1: labelling sch experimental product have different haloger curred according to ets and reactants w a reaction's success nd products.	to multiple different were determined the ss was also done by	erived characteristics of ce that Compounds 1-4 n for synthetic pathway. theoretical proton, ¹³ C, and noting variation	Future Research Because this research is still ongoing and young, there is still more research in progress or to be done: • Obtain and comprehensively analyze all compounds' ¹⁹⁵ Pt and ¹³ C NMR spectra • Conduct elemental analysis • Conduct tests on cancer cultures • Solvent modification in current synthesis pathways to allow for reactivity of different halogenic reagents • Example: Path B, Compound 5 • Test theoretical reactions • Equilibrium and precipitation selectivity			
D	2-phenylpyridine			 Compound o brommution Conclusions Pathways A-E are effective means of producing Compounds 1, 2, 3, and 5 Pathway F is ineffective 			

3

- Many NaX's do not effectively substitute NaI in pathway D, likely due to lowered free ion stability (as per Finkelstein reaction).
 - Solvent variation of successful paths (example: Compound 5,
 - Path B) appears to be an effective means of ligating other halogens
 - The isolation process of Compound 2 is a substantial hazard to sanity
 - Pathway A is highly effective and consistent

• Equilibrium may prove effective route to selective compound synthesis

Acknowledgements

Dr. Murphy for help with NMR, Dr. Howard for mentorship, Dr. Keller for help with WebMO, Shadrach Stitz for being a great lab partner, and Dr. Drew for guidance in research involvement.

Path	Reagents	Product	Solution	Duration, Temp.	Wash	Yield	References		
Α	Compound 0, 2-phenylpyridine	pound 0, 2-phenylpyridine Compound 1		24 hr, 80°C	Vacuum filtration w/ methanol wash	76%	 Barnett, R., & L. Vancamp (2019). Platinum Compounds: a New Class of Potent Antitumour Agents. Nature, 222(5191), 385-386. doi: 10.1038/222385a0 Okada, T., I. M. El-Mehasseb, M. Kodaka, T. Tomohiro, K. Okamoto, & H. Okuno (2001). Mononuclear Platinum(II) Complex with 2-Phenylpyridine Ligands Showing High Cytotoxicity against Mouse Sarcoma 180 Cells Acquiring 		
B	Compound 1, NaI/NaBr Compound 2/5		Acetone/CHCl3+methanc	ol 24 hr, 25°C	In vacuo evap., vacuum filtration w/ H2O wash	80%	High Cisplatin Resistance. Journal of Medicinal Chemistry, 44(26), 4661-4667. doi: 10.1021/jm010203d 3: Brown, A., S. Kumar, & P. B. Tchounwou (2019). Cisplatin-Based Chemotherapy of Human Cancers. Journal of		
C	Compound 2, I2	Compound 3	CHCl3	24 hr, 25°C	DMF washes, vacuum filtration w/ DMF wash	18%	Cancer Science & Therapy, 11(4), 97. 4: Tan, M., Wang, Z., Qin, Q., Huang, X., Zou, B., & Liang, H (2019). Complexes of Platinum(II/IV) with 2-Phenylpyridine Derivatives as a New Class of Promising Anti Cancer Agents Inorganic Chemistry Communications, 108(1), 1.4		
D	Compound o, NaI	K2PtI4	DI H2O	60 s, 25°C	No wash, proceed to path E	75%	https://doi.org/10.1016/j.inoche.2019.107510		
E	K2PtI4, 2-phenylpyridine	Compound 2	1:1 H2O: <i>tert</i> -butanol	24 hr, 75°C	Vacuum filtration w/ methanol wash	75%			
F	Compound 1, I2	Compound 4	CHCl3	20 min, 25°C	N/A	N/A	Research reported in this publication was supported by an Undergraduate Research and Scholarly Activity funding by the University of Alaska Fairbanks.		