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Conclusion

Future Work

Solar Photovoltaic (PV) power generation continues to grow in 
popularity as prices for the technology continue to fall. This 
trend has made solar energy increasingly attractive in smaller, 
electrically isolated Alaskan communities where fuel and 
electricity costs are high. Unfortunately, solar PV is also highly 
variable due to weather effects such as clouds. Being able to 
forecast solar power production a few minutes into the future is 
very useful for ensuring electric grid stability1.

Here, we present preliminary results from a recently installed 
array of  cloud-detecting light sensors deployed around a 
grid-scale solar array in Kotzebue, Alaska, including a 
comparison of forecasting models using data from the sensors 
and discussions on future applications.

Abstract

Introduction

• Network of 10 light sensors 
surrounding the Kotzebue 
Electric Association (KEA) 
solar array to detect clouds

• Installed summer of 2022 

• Powered by solar with a 
small backup battery

• Designed for Arctic 
environments

• Use LoRa radio 
communication

• Data is transmitted live

• Around $450 per sensor

The Sensor Network

Forecasting Models

Metrics and Results

We give our deepest appreciation to the Kikiktagruk Inupiat 
Corporation for generously allowing the sensors used in this 
research to be placed and maintained on their land as well as 
to Kotzebue Electric Association for all their continued 
logistical support. This work would not have been possible 
without your help!

Solar power generation is highly variable due to clouds.

Figure 1 – Sensor deployed in Kotzebue

Figure 2 – ACEP’s sensor network

An inexpensive solution for short-term forecasting

• ARIMA

• Exponential Smoothing

• Neural Networks 

• Sudden surges or dips can destabilize electric grids.

• Smaller, electrically isolated grids are particularly 
vulnerable. 

• Alaska has over 150 such grids.

Diesel generators are the most common solution

• These provide fast-response power to accommodate sudden 
changes. They can range from 30 kW to over 1 MW in 
Alaskan communities.

• Diesel fuel is particularly expensive in these communities.

• Generators cannot be turned on or off quickly and typically 
take 1 to 2 minutes to start from off2, so they must be kept 
running even if solar power production is high, just in case.

What if we knew what the solar array was going to 
do in time to turn on a generator?

• Could money and/or emissions be saved by leaving them off 
more often?

A wide variety of models exist for prediction

Two models used in this analysis
• Long short-term memory (LSTM) neural networks: 

one only using the data from the solar array and 
the other also using the sensor data

How do we know our models work?

The models were evaluated using standard metrics:

Figure 3 – Neural network (LSTM) models forecasting Kotzebue 
Electric Association’s solar array production (Oct. 10th, 2022)

• Mean-Square Error (MSE)

• Root-Mean Square Error (RMSE)

• Mean Absolute Error (MAE)

• Mean Bias Error (MBE)

MSE RMSE MAE MBE FS

Persistence N/A 0.522 1.889 N/A N/A
Without 
Sensors 0.310 0.548 0.393 0.254 -0.050
With 
Sensors 0.242 0.490 0.372 -0.123 0.061

Comparing to a reference

A common model to use as a reference for these types of 
forecasts is a “persistence” model which simply assumes 
that the forecast at any given time is simply equal to the 
last measured data point. This is surprisingly difficult to 
beat at short timescales.

We can define a metric called Forecast Skill (FS) to 
compare our models to the persistence model.

• Parameter tuning to improve model performance 

• Perform a more exhaustive study of potential model structures.

• Test different combinations of sensors to study the influence of 
geographic distribution on model accuracy.

• Implement metrics to see how many sudden changes of a 
certain size our models are missing.

• Test other models such as ARIMA, Exponential Smoothing, 
TBATS, etc. with the sensor data.

• Collect more data.

Table 1 – Normalized model evaluation metrics for 1 month of testing data 
(October, 2022)

It is apparent from Figure 3 that neither model can fully 
forecast the peaks and valleys present in the dataset.

The improvement of the model which used the sensor data 
is modest to be sure, but its gain over the model which 
only used the solar production data shows that the sensors 
can detect clouds in a meaningful way.

The abilities of this current model are severely limited by a 
lack of sensor data. These preliminary results were 
generated using only 2 months of data as a training set. 
More data will undoubtedly help to improve forecast 
accuracy.

The sensor model has a 10.6% better RMSE
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What options exist for solar power prediction

• Numerical weather prediction (not suitable for short-term 
forecasts)

• Satellite imaging (needs large amounts of bandwidth, poor 
coverage over Alaska)

• Sky cameras (expensive, difficult to maintain)


