Plant Hardiness in Alaska

Dr. Patricia S. Holloway Georgeson Botanical Garden University of Alaska Fairbanks

It's sold in Alaska, so it must be hardy!

It's hardy to 90 below!

George grows it. Why can't I?

It's native, right? Therefore it's hardy, right?

USDA Plant Cold Hardiness Map

www.usna.usda.gov

Frost cracks Sunscald

Frost canker

Flower bud death

Evergreen winter burn

Injury from cold and dehyration stress

Plant Hardiness

The ability of a plant to survive and complete its life cycle in synchronization with its environment (regardless of season).

Cycle of Plant Hardiness

Deep Dormancy (more rest)

- Bud scales open
- Rapid elongation of shoots
- Flowering
- Early fruit production

- Sap is flowingCells full of nutrients, fuel for cell division
- •Cells full of water
- •Nutrients, hormones, carbs directed toward growing points

Least hardy time of life cycle

Black cottonwood

www.for.gov.bc.ca

Killing temps 40°F (4°C) and lower

New growth killed or damaged Loss of central leaders Irregular branching Leaf death, spotting, streaking

Crabapple flower

It's the membranes!

Cell membranes:

compartmentalize the cell (nucleus, mitochondria, etc.) control transport of hormones, nutrients control water balance of cell

Hardy plants have flexible membranes!

Fat (lipid) makeup- saturated vs. unsaturated fats Protein makeup- presence of dehydrins

-determine flexibility of membranes-determine ability to tolerate chilling or freezing

Room temp.

Freezer 3 hr

Back to room temp.

Non-hardy plants- membrane failure!

-become leaky
-lose ability to control water
-stick together in dehydration

Poinsettia, 45°F, 6 hr

www.ces.ncsu.edu

Banana, 50°F, 12 hr

Lingon, moved from 75°F to 40°F, rapidly

How to have the best acclimated plants:

- 1. Start with good genes, flexible membranes!
- 2. Slow down. Don't move too fast

Cell membranes function in cell sap

- Not pure water
- Lots of sugars
 - How much sugar?What kind of sugar?
 - = antifreeze =
 increased hardiness

High-sugar sap → freezing point depression

Not so hardy plants 0 to 2°

Hardy plants 3-5° depression

Genetics Types of sugars Age of plant Health of plant

www.azstarnet.com

Nutrient deficiency www.cthar,edu Leaf defoliators, skeletonizers

Aspen leaf tortrix fs.fed.us

Disease

How to have the best acclimated plants:

- 1. Start with good genes, flexible membranes!
- 2. Slow down. Don't move too fast
- 3. Healthy, disease free plants

Rosa 'Therese Bugnet'

So how about winter hardiness?

Amur maple

Cold acclimation

changes in a plant to allow tolerance of steadily colder temperatures

Bog blueberry

Strategies for cold acclimation:

Annuals

- Entire plant dies
- Genes packaged into a seed
- Small bits of dehydrated cells buried in soil

Sunflower

Calendula

Another option:

Herbaceous perennials

- Many produce seeds
- Plant dies to roots or crown

Alaska cerastium

- Plant protected by soil
 - Moderated temps
 - Slow freeze, thaw

Fireweed

Fernleaf Peony

The toughest of them all:

Woody perennials

 Must acclimate to the lowest regional temperature

Rosa 'LacMajeau'

Greene's mountain ash

Western sand cherry

If capable of hardening, then

Decreasing Photoperiod

0 - 10° increase in hardiness

Decreasing air temperatures

10 - 20° increase in hardiness

20+° increase in hardiness

Combination of photoperiod and temperature

Level of hardiness

You purchase a Red maple from Minnesota

Acclimation trigger ~14 hrs

- Fairbanks = Sept 6,
 - Acclimation period 3-5 weeks
- Anchorage = Sept 3
 - Acclimation period 6-10 weeks
- Juneau = Aug 31
 - Acclimation period 10+
 weeks

Some plants are flexible, but first planting year is tricky

Start early in greenhouses Force bare-root plants Plant in mid summer Mulch heavily Insulating blankets

How to have the best acclimated plants:

1. Start with good genes, flexible membranes!

- 2. Slow down. Don't move too fast
- 3. Healthy, disease free plants
- 4. Hardiness gene tuned into photoperiod, temperature cues
 - 5. Give new plants a head start on the season
 - 6. Mulch heavily, winter protection 1st year

Photoperiod and low temps trigger hardiness factor

- Manufactured in leaves, buds
- Translocated throughout plant

What happens if..

Renovate a shrub late in summer? Cut back iris leaves in early summer?

Prune young trees in late summer?

How to have the best acclimated plants:

- 1. Good genes, flexible membranes!
- 2. Slow down. Don't move too fast.
- 3. Healthy, disease free plants.
- 4. Hardiness genes- tuned into photoperiod, temperature
- 5. Give new plants a head start on the season
- 6. Mulch heavily, winter protection 1st year
- **7.** Avoid:
 - a. early summer leaf removal on herbaceous perennials
 - b. late summer shrub renovation
 - c. late summer pruning

What's happening inside?

Sugar & starch Accumulation In cell sap = antifreeze

Membrane fats and proteins change

www.usu.edu

Hormones: Abscisic acid increases Calcium ions flood cell, activate hardiness genes Waters moves into spaces between cells

Cells dehydrate

The importance of calcium

Uneven watering interrupts flow of calcium ions in cells

- Cold hardiness -
 - Calcium ions increase
 - Turn on hardiness genes

What happens to hardiness if calcium ions interrupted?

How to promote calcium buildup

 Irrigate in late summer Check lime requirement of soils

 Spray leaves with calcium chloride during the growing season

Process is continuous

- Once triggered by photoperiod and temperature
- Hardiness increases with colder and colder temps to genetic limit of the plant

Seasonal changes in frost hardiness for 4 woody plants compared with daily temperature minimum (Germany)

What happens if:

In mid November, temperatures drop over night to -20°F?

In late April, temps drop to 0°F?

All plant parts are not equal!

- Least hardy Roots
 - Flowers
 - New leaves & shoots
 - Flower buds
 - Vegetative buds
 - Older shoots

Most hardy

Dormancy(rest)

Inability of a plant to grow even if conditions are favorable

Chemical inhibitors prevent growth

Becoming dormant

- Growth in length ceases
- Terminal buds, bud scales form
- Bark thickens
- Needles, evergreen leaves get waxy
- Deciduous leaves drop
- Fruit, seeds ripens

Russian crabapple

Acclimation- continuous process, daily, hourly response

Plants can be acclimated to low temperatures but not dormant

You fertilize with nitrogen? Prune heavily?

Air temperatures increase?

How do you tell dormancy?

Bring plant or branch indoors

Flowers Budbreak= not dormant No growth= dormant

Flowers Budbreak= not dormant

Cycle of Plant Hardiness

Deep Dormancy (more rest)

How to promote hardy plants?

Start with good genes Keep plants healthy, lots of leaves Fertilize with N early in non-dormant season

Kinnikinnick

Check soils for lime requirements Avoid late season pruning Protect new growth

Learn your growth, dormancy cycles

Singleseed ninebark

Siberian pine

Rosa 'Lac Majeau'

Alaska birch

Throw out hardiness zone maps!

Assumes good, healthy plant

Singleseed ninebark •Growing well all season

•Sufficient nutrients for stored proteins, carbs

 Not weakened by disease, insect pests

Braun's holly fern

Promoting good plant acclimation

- Fertilize well early in season, then stop (especially N)
- Irrigate well all season
- Avoid severe pruning in late summer

- Do not remove leaves or cut back stems too early
- Leaf removal late may induce dormancy

How to have the best acclimated plants:

- 1. Start with good genes, flexible membranes!
- 2. Slow down. Don't move too fast