# **Determining Phylogeny of Salmonidae Using DNA sequence analysis of VCPIP and ENC genes Melissa Streitmatter, Robert Marcotte, and Andres Lopez** University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife

### Introduction

In this experiment, some species of the family Salmonidae, Thymalliane, Petromyzontidae, Umbridae, and Esocidae were compared to study the phylogeny of Salmoniae.. Salmonidae are a family of ray-finned fish that includes salmon, trout, chars, freshwater whitefishes, and graylings. Tissue samples from these fish were obtained from University of Alaska Museum (UAF) and Academy of Natural Sciences Philadelphia. DNA was extracted from these tisses and the VCPIP and ENC genes of the DNA were studied. The DNA was amplified using PCR and analyzed by gel photos produced from gel electrophoresis. After maximum product from DNA was obtained, DNA was sequenced so that a phylogenic tree for the family Salmonidae could be created. Salmonidae have also been studied in the past using techniques such as morphology and microarrays.

## **Materials and Methods**

- Tissue samples and species type shown in Table 1. Tissue extracted by Robert Marcotte (UAF, Dr. A. Lopez lab) or Richard Bekeris and myself using a Qiagen QIAamp<sup>®</sup> DNA Mini kit.
- PCR amplifying VCPIP and ENC genes was performed on all DNA samples.
- Gel electrophoresis was run using a solution of 0.8% (w/v) agarose gel to visualize sequences.
- A nanodrop spectrometer was used only on samples 21 to 25 to quantify the concentration in ng/ $\mu$ L to determine if DNA was present, as product had not been showing up in gel photos.
- Once maximum product was produced, samples that showed product were selected to be sequenced.
- Samples were put into a sequencing reaction mix and ran in a thermocycler.
- DNA was purified using sodium acetate (3M)-ethanol precipitation.
- DNA was sequenced and phylogenetic tree for Salmonidae was created

Table 2. Summary of base pair lengths from PCR trials using VCPIP and ENC genes

| Sample | VCPIP    |      |      |      | ENC       |         |      |      |
|--------|----------|------|------|------|-----------|---------|------|------|
| Number | 84F, 946 | 5R   |      |      | 86F, 982R |         |      |      |
| Run #  | 1        | 2    | 3    | 4    | 1         | 2       | 3    | 4*   |
| 01     | None     | 700  | N/A  | None | None      | 400,600 | None | N/A  |
| 02     | 700      | None | None | None | 600       | 400,600 | None | N/A  |
| 03     | None     | 700  | None | None | None      | 400,600 | 600  | None |
| 04     | None     | 700  | N/A  | None | 600,700   | 400,600 | 600  | 580  |
| 05     | None     | 700  | N/A  | None | 600,700   | N/A     | N/A  | 580  |
| 06     | None     | 700  | N/A  | None | None      | 400,600 | 600  | 580  |
| 07     | None     | 700  | None | None | None      | 400,600 | 600  | 580  |
| 08     | None     | 700  | N/A  | None | 600,700   | N/A     | None | 580  |
| 09     | None     | None | None | N/A  | 600,700   | 400,600 | None | 580  |
| 10     | None     | 700  | N/A  | N/A  | None      | 400,600 | None | N/A  |
| 11     | None     | None | None | N/A  | 600       | None    | None | N/A  |
| 12     | None     | None | None | N/A  | 600       | None    | None | N/A  |
| 13     | None     | None | None | N/A  | 600       | None    | None | N/A  |
| 14     | None     | 700  | N/A  | None | 600,700   | 400,600 | None | N/A  |
| 15     | 700      | 700  | N/A  | None | 600,700   | 400,600 | None | N/A  |
| 16     | None     | None | None | N/A  | None      | 400,600 | None | N/A  |
| 17     | 700      | 700  | N/A  | 580  | None      | 400,600 | None | N/A  |
| 18     | None     | None | none | N/A  | 600,700   | 400,600 | None | N/A  |
| 19     | None     | 700  | 700  | 580  | 600,700   | N/A     | N/A  | None |
| 20     | None     | 700  | None | 580  | 600,700   | N/A     | N/A  | N/A  |
| 21     | None     | N/A  | None | N/A  | none      | 400,600 | None | None |
| 22     | None     | N/A  | none | N/A  | 600,700   | N/A     | N/A  | N/A  |
| 23     | None     | N/A  | None | N/A  | 600,700   | N/A     | N/A  | None |
| 24     | None     | N/A  | None | N/A  | 600       | 400,600 | None | None |
| 25     | None     | N/A  | None | N/A  | none      | N/A     | N/A  | N/A  |

\*Reverse Primer 9/5R was used instead of 982R

|                    |                                                   | 01                                    |                                                                                         |
|--------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| Table 1.<br>Tube # | Summary of tissue sar<br>Sample (Scientific Name) | nples and species type<br>Common Name | Figure 1. DNA Sequence Analysis of VCPIP and ENC genes                                  |
| 01                 | Thymallus Grubbi I                                | Amur Grayling                         |                                                                                         |
| 02                 | Thymallus Grubsi II                               | Amur Grayling                         | MALKING MALKING                                                                         |
| 03                 | Hucha Taimen I                                    | Taimen                                | ХА 6 С Т Т 6 Т С А С А Т 6 А А 6 6 Т С Т 6 Т С С Т<br>А РАНГ А05_2011-07-07 290 290 300 |
| 04                 | Hucha Taimen II                                   | Taimen                                |                                                                                         |
| 05                 | Brachymystax Lenok I                              | Lenok                                 | A A A A A A A A A A A A A A A A A A A                                                   |
| 06                 | Brachymystax Lenok II                             | Lenok                                 |                                                                                         |
| 07                 | Salvelinus Namaycush I                            | Lake Trout                            |                                                                                         |
| 08                 | Salvelinus Namaycush II                           | Lake Trout                            | The reason for no product sl                                                            |
| 09                 | Salvelinus Namaycush III                          | Lake Trout                            | •                                                                                       |
| 10                 | Salvelinus Alpinus                                | Arctic Char                           | not anneal correctly possibly                                                           |
| 11                 | Lampetra Alaskense I                              | Alaskan Brook Lamprey                 | region.                                                                                 |
| 12                 | Lampetra Alaskense I                              | Alaskan Brook Lamprey                 | •                                                                                       |
| 13                 | Coregonus Pidschian I                             | Humpback Whitefish                    | As expected, all individuals                                                            |
| 14                 | Coregonus Pidschian II                            | Humpback Whitefish                    | as shown in Figures 2 and 3.                                                            |
| 15                 | Coregonus Laurettae I                             | Bering Cisco                          |                                                                                         |
| 16                 | Coregonus Laurettae II                            | Bering Cisco                          | In comparing both phylogen                                                              |
| 17                 | Thymallus Articus                                 | Arctic Grayling                       | and Hucho Taimen were more                                                              |
| 18                 | Hucho Perryi                                      | Japanese Huchen                       |                                                                                         |
| 19                 | Dallia Pectoralis                                 | Alaska Blackfish                      | is to Salvelinus Namaycush.                                                             |
| 20                 | Esox Lucius                                       | Northern Pike                         | Of the ENC phylogeny, the p                                                             |
| 21                 | Umbra Pygmae                                      | Eastern Mudminnow                     | out of 4 trees shown in the St                                                          |
| 22                 | Exos Niger                                        | Chain Pickerel                        |                                                                                         |
| 23                 | Umbra Limi I                                      | Umbra Mudminnow                       | The VCPIP tree is different fr                                                          |
| 24                 | Umbra Limi II                                     | Umbra Mudminnow                       | (1993) article, specifically wit                                                        |
| 25                 | Novumbra Hubbsi                                   | Olympic Mudminnow                     |                                                                                         |
|                    |                                                   |                                       |                                                                                         |

# Results

PCR of VCPIP and ENC genes inconsistently produced product. Results of all PCR trials shown in Table 2. Results of DNA Sequence Analysis of VCPIP and ENC genes shown in Figure 1. Of 48 sequencing reactions, most were successful, but only a few sequences from a few pairs of forward and reverse primer pairs were aligned; 5 pairs from VCPIP and 7 pairs from ENC were aligned. 5 more sequences were added to the VCPIP collection, using sequence results from only a single direction. The final alignment length for VCPIP was about 639 base pairs and 707 base pairs for ENC. For VCPIP there were 302 polymorphisms among those samples and for ENC there were 218 polymorphisms. Using a neighbor-joining method, two unrooted trees were created; rooted trees were made using D. *Pectoralis* as an outgroup (Figures

2,3)

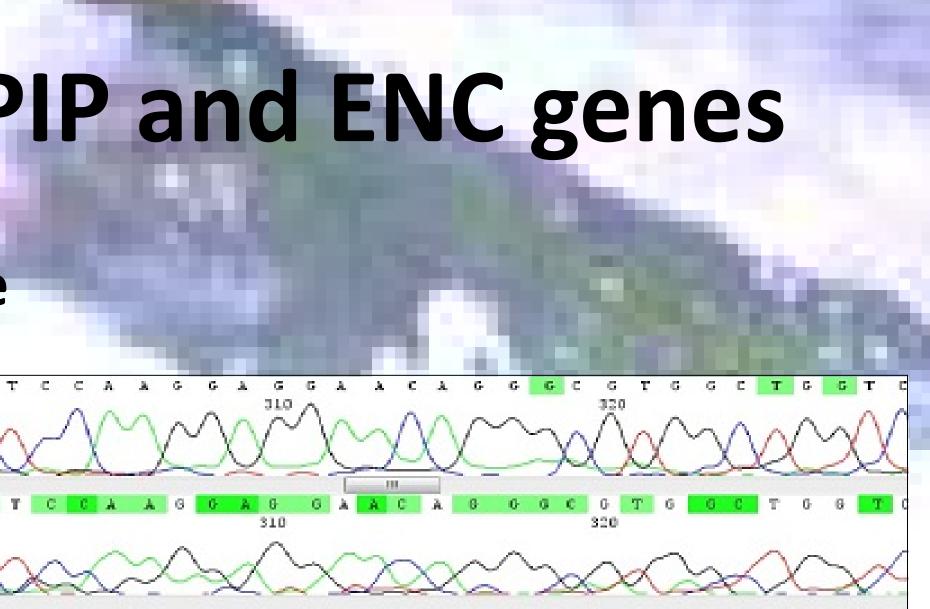
Figure 2. Rooted phylogenetic tree of certain species of Salmonidae using EN 0.01 Figure 3. Rooted phylogenetic tree of certain species of Salmonidae using VCPIP gene Dallia *Pectoralis* Esox *Lucius* 

| IC gene                       |
|-------------------------------|
|                               |
| Salvelinus Namaycush 2        |
| Salvelinus Namaycush 1        |
| Salvelinus <i>Namaycush</i> 3 |
| Brachymystax Lenok 1          |
| Hucho <i>Taimen</i> 1         |
| Hucho <i>Taimen</i> 2         |

| Thymallus Grubii 2                                   |
|------------------------------------------------------|
| ——— Thymallus <i>Grubii</i> 1                        |
| allus Articus                                        |
| - Coregonus Laurettae 2                              |
| Coregonus <i>Pidschian</i> 2                         |
| Salvelinus Namaycush 2                               |
| Hucho <i>Taimen</i> 2<br>Brachymystax <i>Lenok</i> 2 |

s of a single species were closely monophyletic, enetic trees, it is seen that Brachymystax Lenok re closely related to each other than either one placement of 3 genera was consistent with 3 Stearly and Smith (1993) article. from all 3 trees shown in the Stearly and Smith th the placement of *Coregonus* and *Thymallus*. •All trees based on mitochondrial DNA from Crespi and Fulton (2004) agreed with the VCPIP tree. None of the nuclear loci studied agreed with the VCPIP tree. GH1C gene was the only nuclear gene that disagreed with the ENC tree No comparisons can be made with VCPIP tree using Koop (2008) but it is noted that *Thymallus* is a more basil group than *Coregonus*. No comparisons can be made with ENC tree because it is dealing with 3 different genera that are not present in the trees created by Koop.

•All individuals of a single species were closely monophyletic. The ENC and VCPIP trees did not contradict each other. •Based on the trees presented in this poster and the trees from the three articles, it is shown that the trees constructed from genetic data were more closely related to the VCPIP and ENC trees than the trees constructed using morphology.


Crespi, Bernard J. and Fulton, Michael J. 2003. Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. *Molecular Phylogenetics and Evolution.* www.sciencedirect.com Koop, Ben F. 2008. A salmonid EST gemonic study: genes, duplications, phylogeny, and microarrays. *BMC Genomics* 9:545 Stearley, R. F. and Smith, G. R.1993. Phylogeny of the Pacific Trouts and Salmons (Oncorhynchus) and Genera of the Family Salmonidae. *Transactions of the American* Fisheries Society 122:1: 1-33

This project was sponsored by Rural Alaska Honors Insitute, University of Alaska Fairbanks, College of Rural and Community Development, IDeA Network for Biomedical Research Excellence, Alaska (INBRE), Alaska Bio PREP, National Institutes of Health, and by Grant Number 5P20RR016466 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. This research was mentored by Dr. Andres Lopez and Robert Marcotte. Lab work was performed with the help of Richard Bekeris.





Alaska BioPREP University of Alaska Fairbanks



### Discussion

showing up in the gels was that the primers did y because of polymorphisms in the primer

### Conclusion

### **Literature Cited**

### Acknowledgements



