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SUMMARY

This paper describes the formulation, verification, and validation of a depth-integrated, non-hydrostatic
model with a semi-implicit, finite difference scheme. The formulation builds on the nonlinear shallow-water
equations and utilizes a non-hydrostatic pressure term to describe weakly dispersive waves. A momentum-
conserved advection scheme enables modeling of breaking waves without the aid of analytical solutions
for bore approximation or empirical equations for energy dissipation. An upwind scheme extrapolates
the free-surface elevation instead of the flow depth to provide the flux in the momentum and continuity
equations. This greatly improves the model stability, which is essential for computation of energetic
breaking waves and run-up. The computed results show very good agreement with laboratory data for
wave propagation, transformation, breaking, and run-up. Since the numerical scheme to the momentum
and continuity equations remains explicit, the implicit non-hydrostatic solution is directly applicable to
existing nonlinear shallow-water models. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The nonlinear shallow-water equations have many applications in modeling of long waves such as
tides, storm surges, and tsunamis. The finite difference method, owing to its simplicity in formu-
lation and ease of implementation, is widely used in the solution schemes of the depth-integrated
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governing equations. Researchers have made significant efforts in improving numerical schemes
and boundary treatments to model long-wave propagation, transformation, and run-up [1–6]. These
explicit schemes provide efficient solutions for large computational problems, thereby enabling
their extensive application in modeling of tsunamis and the associated flood hazards. Despite the
advancements, the issues with wave breaking and dispersion remain unresolved with these finite
difference models.

The commonly used finite difference schemes for the nonlinear shallow-water equations are
non-conservative; this results in volume loss and energy dissipation as the wave steepness increases
and the flow approaches discontinuity. This becomes an important modeling issue when tsunami
or tidal bores develop near shore. Some models remain stable after wave breaking leading to the
convenient assertion that these models mimic the energy loss with numerical dissipation, even
though the dissipation itself is grid dependent. Stelling and Duinmeijer [7] developed a conservative
formulation of the advective terms in the momentum equations to handle flow discontinuity for
velocity-based nonlinear shallow-water models. They impose energy conservation to strong flow
contractions and momentum conservation to mild flow contractions and expansions. Their approach
approximates flow discontinuities as bores or hydraulic jumps as in a finite volume model, using
a Riemann solver [8–10].

Horrillo et al. [11] showed that the lack of dispersion in shallow-water models results in under-
estimation of far-field tsunami impacts. Stelling and Zijlema [12] proposed a semi-implicit finite
difference model, which accounts for dispersion through a non-hydrostatic pressure term. In both
the depth-integrated and multi-layer formulations, they decompose the pressure into hydrostatic
and non-hydrostatic components as in Casulli [13] and apply the Keller-box scheme [14] in the
vertical gradient approximation of the non-hydrostatic pressure. The solution to the hydrostatic
problem remains explicit; the non-hydrostatic solution derives from an implicit scheme to the three-
dimensional continuity equation. The depth-integrated governing equations are relatively simple
and analogous to the nonlinear shallow-water equations with the addition of a vertical momentum
equation and non-hydrostatic terms in the horizontal momentum equations. Walters [15] adapted
this non-hydrostatic approach into a finite element method. Numerical results show that both
depth-integrated models estimate the dispersive waves slightly better than the classical Boussinesq
equations of Peregrine [16].

Zijlema and Stelling [17] recently extended their multi-layer model to include the momentum-
conserved formulation for the advective terms and an upwind approximation in the continuity
equation, and derived semi-implicit schemes for both the hydrostatic and non-hydrostatic solutions.
Their two-layer model can handle wave breaking without the use of empirical relations for energy
dissipation and provide comparable results with those of extended Boussinesq models [18–20].
Such a non-hydrostatic approach, if builds on existing nonlinear shallow-water models with explicit
schemes [1–6], will have greater application in the research community. Stability, however, is a
critical issue. The difficulty lies in the flux approximation, in which the velocity and flow depth
are evaluated at different locations in a finite difference scheme. The resulting errors in flux
estimations often become the source of instability. Mader [21] proposed a unique upwind scheme
that extrapolates the surface elevation instead of the flow depth to determine explicitly the flux
in the continuity equation of a nonlinear shallow-water model. Kowalik et al. [22] implemented
this upwind flux approximation and showed remarkable stability in simulating global tsunami
propagation and run-up.

In this paper, we propose a depth-integrated non-hydrostatic model capable of handling flow
discontinuities associated with breaking waves and hydraulic jumps. The present formulation,
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which builds on an explicit scheme of the nonlinear shallow-water equations, allows a direct imple-
mentation of the upwind flux approximation of Kowalik et al. [22] to improve model stability for
discontinuous flows. Simulation of solitary wave propagation and sinusoidal wave transformation
over a submerged bar provides validation of the dispersion characteristics of the proposed non-
hydrostatic model. Solitary wave transformation over a plane beach and a conical island provides
a series of validation tests for modeling of wave breaking and run-up. These near shore processes
including energetic breaking waves have been used extensively for validation of nonlinear shallow-
water and Boussinesq-type models, but examinations of depth-integrated non-hydrostatic models
in describing these processes are less immediately evident. The modular structure of the proposed
non-hydrostatic model allows a systematic examination of the numerical characteristics by turning
the momentum-conserved advection and upwind flux approximation on and off in the tests.

2. GOVERNING EQUATIONS

In this section, we summarize the formulation and assumptions of the governing equations for the
depth-integrated, non-hydrostatic free-surface flow. The governing equations are derived from the
incompressible Navier–Stokes equations and the continuity equation in the Cartesian coordinates
system (x, y, z) given as
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where (u,v,w) is flow velocity; t is time, � is water density; p is pressure; g is gravitational
acceleration; and � is the kinematic viscosity coefficient.

The flow depth is defined as D=�+h where � is the surface elevation measured from the
still-water level and h is the water depth. Material derivatives of the surface elevation and water
depth give rise to the kinematic free surface and seabed boundary conditions as
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The vertical velocity w varies linearly from the seabed to the free surface for modeling of weakly
dispersive waves in depth-integrated flows. The vertical advective and dissipative terms, which
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are small compared with their horizontal counterparts, can consistently be omitted in the vertical
momentum equation (3). Following Stelling and Zijlema [12] and Casulli [13], we decompose the
pressure into hydrostatic and non-hydrostatic components as

p=�g(�−z)+q (7)

where q denotes the non-hydrostatic pressure. Both the hydrostatic and non-hydrostatic pressure
terms vanish at z=� to provide the dynamic free-surface boundary condition.

Depth integration of (1), (2), and (4) and linearization of (3) with the Keller-box scheme [14],
taking into account the boundary conditions (5) and (6) and the pressure decomposition (7), yield
the governing equations of the non-hydrostatic free-surface flow [12]. The resulting x , y, and z
momentum equations as well as the continuity equation are
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where U,V , and W are depth-averaged velocity components in the x , y, and z directions; q is now
defined as the non-hydrostatic pressure at the bottom; and n is Manning’s roughness coefficient.
Because of the assumption of a linear distribution for w, the velocity component W is simply
the average value of w at the free surface and the seabed given, respectively in (5) and (6).
Except for the addition of the vertical momentum equation and the non-hydrostatic pressure in the
horizontal momentum equations, the governing equations have the same structure as the nonlinear
shallow-water equations. This formulation allows a straightforward extension of existing nonlinear
shallow-water models for non-hydrostatic flows.

3. NUMERICAL FORMULATION

The numerical formulation includes the solution schemes for the hydrostatic and non-hydrostatic
components of the governing equations as well as the treatment of the moving waterline for run-up
calculation. The finite difference scheme utilizes the upwind flux approximation of Kowalik et al.
[22] in the continuity equation as well as the calculation of the advective terms in the horizontal
momentum equations. Figure 1 shows the space-staggered grid for the computation. The model
calculates the horizontal velocity components U and V at the cell interface and the free-surface
elevation �, the non-hydrostatic pressure q, and the vertical velocity W at the cell center, where
the water depth h is defined.
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Figure 1. Definition sketch of spatial grid.

3.1. Hydrostatic model

The hydrostatic model utilizes an explicit scheme for the solution. Integration of the continuity
equation (11) provides an update of the surface elevation at the center of cell ( j,k) in terms of the
x and y fluxes, FLX and FLY, at the cell interfaces as
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�x
−�t
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�y
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where m denotes the time step, �t the time step size, and �x and �y the grid sizes in the x and
y directions. The upwind scheme gives the flux terms at ( j , k) as
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The upwind flux approximation (13a and 13b) extrapolates the surface elevation from the upwind
cell, while the water depth takes on the average value from the two adjacent cells [22]. This
represents a departure from most existing shallow-water models [1, 3–6]. Alternatively, the flux
can be determined with a second-order scheme as
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This approach uses average values of the surface elevations and water depths from adjacent cells to
determine the flux and is equivalent to the flux-based formulation of the nonlinear shallow-water
equations [1, 4, 5].

The horizontal momentum equations provide the velocity components U and V at (m+1) in
(13a and 13b) for the update of the surface elevation in (12). In the spatial discretization, the
average values of U and V are used in the y- and x-momentum equations, respectively. These
average velocity components are defined by

Ūm
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Integration of the x- and y-momentum equations (8) and (9), with the non-hydrostatic terms
omitted, provides an intermediate solution for the horizontal velocity
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where V̄ m
xp , V̄

m
xn , Ū

m
yp , and Ū

m
yn are advective speeds in the respective x- and y-momentum equations

calculated from (16) and (17).
Most nonlinear shallow-water models, which use the advective speeds from (14) in the

momentum equations, cannot capture flow discontinuities associated with breaking waves or
hydraulic jumps. Stelling and Duinmeijer [7] derived an alternative discretization of the advective
speeds that conserves energy or momentum across flow discontinuities. Momentum conservation
provides a better description of bores or hydraulic jumps that mimic breaking waves in depth-
integrated flows. We adapt the momentum-conserved advection scheme from [7] with the present
upwind flux approximation to provide the advective speeds in the momentum equations. This
approach gives rise to Um
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p j,k +|Ûm
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where the flux for a positive flow (Um
j,k>0) is given by
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The advective speeds Ūm
yp, Ū

m
yn, V̄

m
xp , and V̄ m

xn in (18) and (19) can be obtained from (20) to (25a
and 25b) with (16) and (17) as well as average values of � j,k, and h j,k calculated in the same way.
This completes the numerical formulation for the nonlinear shallow-water equations in describing
hydrostatic flows.

In comparison, Stelling and Duinmeijer [7] derived the momentum-conserved advection scheme
from the conservative form of the nonlinear shallow-water equations. The resulting momentum
equations are the same as the non-conservative form with the exception of the advective speeds,
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which are given by
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present approach extrapolates the surface elevation at the cell interface and directly calculates the
fluxes FLUm

p j,k and FLUm
nj,k at the cell center from (22a) and (22b). With the water depth defined

at the cell center, any discontinuity is due entirely to the surface elevation. The present upwind
scheme avoids errors from depth extrapolation and most importantly improves the capability to
capture flow discontinuities. This becomes essential when the topography is irregular and wave
breaking is energetic.

3.2. Non-hydrostatic model

This section describes the development of the non-hydrostatic solution from the nonlinear shallow-
water results as well as the bottom pressure and vertical velocity terms neglected in the hydro-
static formulation. Integration of the non-hydrostatic terms in the horizontal momentum equations
completes the update of the horizontal velocity from (18) and (19)
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Discretization of the vertical momentum equation (10) gives the vertical velocity at the free
surface as
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The vertical velocity at the sea bottom is evaluated from the boundary condition (6) as
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The horizontal velocity components and the vertical velocity at the free surface are now expressed
in terms of the non-hydrostatic pressure.

The non-hydrostatic pressure qm+1
j,k is calculated implicitly using the continuity equation (4)
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Substitution of (29), (30), and (32) into the continuity equation (36) gives a system of linear
algebraic equations
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where the coefficients are computed from the surface elevation and flow depth in the forms of
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(−1+B j,k−1)

PT j,k = �t

2��y2
(−1−B j,k)

PC j,k = �t

2��x2
[(1+A j,k)+(1−A j+1,k)]+ �t

2��y2
[(1+B j,k−1)+(1−B j,k)]+ 2�t

�(Dm
j,k)

2
(38)

and the forcing vector is given in terms of the velocity gradients

Q j,k=− Ũm+1
j+1,k−Ũm+1

j,k

�x
− Ṽ m+1

j,k − Ṽ m+1
j,k−1

�y
−

wm
s j,k +wm

bj,k
−2wm+1

b j,k

Dm
j,k

(39)
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The Poisson-type equation (37) defines the physics of the non-hydrostatic processes through the
non-dimensional parameters, �x/�y,�x/Dj,k,�y/Dj,k, A j,k, and B j,k. The scaling parameter
�x/�y accounts for the different grid sizes along the x and y directions, while �x/Dj,k and
�y/Dj,k define the scales of the horizontal (non-dispersive) and vertical (dispersive) flows. The
key role in the generation and modification of dispersive waves lies in A j,k and B j,k, which
describe the magnitude of the bottom and free-surface slopes. The vertical component of the flow,
important for sustaining dispersive processes, is imparted through the bottom and surface slopes in
terms of the horizontal flow components from the boundary conditions (5) and (6). As the ocean
bottom and surface slopes start to change abruptly at shelf breaks and around steep seamounts and
canyons, the coefficients A j,k and B j,k may strongly influence the solution process. The equation
type may even change in the run-up calculation as the water depth h j,k varies from positive to
negative across the shoreline and the values of A j,k and B j,k can be greater than unity.

In the implementation, the non-hydrostatic pressure is assigned to be zero at the boundary cells
of the computational domain [12]. The matrix equation (37) in the form of [P]{q}={Q} provides
the non-hydrostatic pressure over the interior cells at each time step. The matrix [P] is non-
symmetric, which is solved by the bi-conjugate gradient squared stabilized (Bi-CGSTAB) algorithm
with an incomplete lower upper (ILU) preconditioner [23–25]. Once the non-hydrostatic pressure
is determined, the horizontal velocity is calculated from (29) and (30) and the bottom and free
surface vertical velocities from (32) and (33), respectively. The surface elevation is computed from
(12) with the horizontal velocity components from (29) and (30) to complete the non-hydrostatic
solution.

3.3. Wet–dry moving boundary condition

For inundation or run-up calculations, special numerical treatments are necessary to describe the
moving waterline in the swash zone. The present non-hydrostatic model keeps track of the interface
between wet and dry cells using the approach of Kowalik et al. [22] that extrapolates the numerical
solution from the wet region onto the beach. The non-hydrostatic pressure is set to be zero at the
wet cells along the wet–dry interface to conform with the solution scheme of the non-hydrostatic
model.

The moving waterline scheme provides an update of the wet–dry interface as well as the
associated flow depth and velocity at the beginning of every time step. A marker CELLm

j,k first
updates the wet–dry status of each cell based on the flow depth and surface elevation. If the flow
depth Dm

j,k is positive, the cell is under water and CELLm
j,k =1, and if Dm

j,k is zero or negative, the
cell is dry and CELLm

j,k =0. This captures the retreat of the waterline in an ebb flow. The surface
elevation along the interface then determines any advancement of the waterline. For flows in the
positive x direction, if CELLm

j,k is dry and CELLm
j−1,k is wet, CELLm

j,k is reevaluated as

CELLm
j,k=1 (wet) if �mj−1,k>−h j,k

CELLm
j,k=0 (dry) if �mj−1,k�−h j,k

If CELLm
j,k becomes wet, the scheme assigns the flow depth and velocity component at the cell as

Dm
j,k =�mj−1,k+h j,k, Um

j,k =Um
j−1,k

The marker CELLm
j,k is then updated for flows in the negative x direction. The same procedures

are implemented in the y direction to complete the wet–dry status of the cell. In case the water
flows into a new wet cell from multiple directions, the flow depth is averaged.
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Once the wet–dry cell interface is open by setting CELLm
j,k =1, the flow depth Dm

j,k and velocity
(Um

j,k, V
m
j,k) are assigned to the new wet cell to complete the update of the wet–dry interface at time

step m. The surface elevation �m+1
j,k and the flow velocity (Um+1

j,k ,Vm+1
j,k ) over the computational

domain are obtained through integration of the momentum and continuity equations along with the
implicit solution of the non-hydrostatic pressure as outlined in Sections 3.1 and 3.2. The moving
waterline scheme is then repeated to update the wet–dry interface at the beginning of the (m+1)
time step. This approach remains stable and robust for the non-hydrostatic flows without artificial
dissipation mechanisms.

4. RESULTS AND DISCUSSION

We implemented the momentum-conserved advection scheme and the non-hydrostatic formulation
to the nonlinear shallow-water model of Kowalik et al. [22]. The resulting FORTRAN program,
NEOWAVE (Non-hydrostatic Evolution of Ocean WAVE), has a modular structure that allows
selection of various numerical schemes in building a hydrostatic or non-hydrostatic model for a
specific application. Previous studies have verified and validated the hydrostatic model for wave
propagation, transformation, and run-up with analytical solution and laboratory data [3, 11, 22, 26].
This study verifies and validates the non-hydrostatic model through a series of numerical exper-
iments involving solitary wave propagation in a channel, sinusoidal wave transformation over a
submerged bar, and solitary wave run-up on a plane beach and a conical island. In addition, we
examine the model performance with and without the upwind flux approximation in the wave
transformation experiment and with and without the momentum-conserved advection scheme in
the two run-up experiments. No filtering is applied in the numerical results presented in this
study.

4.1. Solitary wave propagation in a channel

The assumptions on the pressure and vertical velocity distributions in the present non-hydrostatic
model are equivalent to those of the classical Boussinesq equations. Since the solitary wave
is a solution of the classical Boussinesq equations, the numerical experiment of solitary wave
propagation in a channel of constant depth has been a standard test for non-hydrostatic models
[12, 15]. The solitary wave should maintain its waveform and celerity through propagation in an
inviscid fluid. In the numerical experiment, we consider a 2500m long and 10m deep channel
with radiation conditions at both ends. The initial condition corresponds to a 2m high solitary
wave at x=100m. The computation uses �x =�y=1.0m,�t=0.05s, and a Manning’s roughness
coefficient n=0.0 for the inviscid flow.

Figure 2 shows the initial solitary wave and the computed waveforms along the channel at 5,
60, 120, and 180 s. The wave height decreases slightly at the very beginning due to the use of an
analytical solution as the initial condition. The computed waveform stabilizes with a maximum
surface elevation of 1.92m after t≈5s. The horizontal dotted line at �=1.92m indicates that the
wave height remains steady for the remainder of the simulation. The computed waveform maintains
its symmetry without noticeable trailing waves after propagating for 180 s in the channel. The
ability to maintain the solitary waveform derives from the non-hydrostatic terms in the formulation.
Numerical experiments with the upwind flux approximation replaced by the second-order scheme
or with the momentum-conserved advection scheme turned off yielded very similar results, which
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Figure 2. Solitary wave profiles along a channel with constant water depth.

are not presented here for brevity. Refinement of the computational grid, however, can diminish
the initial reduction of the wave height, confirming that as a numerical artifact.

4.2. Sinusoidal wave propagation over a bar

Beji and Battjes [27] and Luth et al. [28] conducted a laboratory experiment to examine sinusoidal
wave propagation over a submerged bar. Figure 3(a) shows the experimental setup in a 37.7m
long, 0.8m wide, and 0.75m high wave flume. A hydraulically driven, piston-type random wave
generator is located at the left side of the flume and a 1:25 plane beach with coarse material is
placed at the right side to serve as a wave absorber. The submerged trapezoidal bar is 0.3m high
with front slope of 1:20 and lee slope of 1:10. The computational domain in Figure 3(b) is 35m
long and 0.4m deep and is discretized with �x=�y=1.25cm and �t=0.01s. Surface roughness
is unimportant in this experiment and a Manning’s coefficient n=0.0 is used. We consider the test
case with the 1 cm incident wave amplitude and 2.02 s wave period that corresponds to the water
depth parameter kh=0.67, where k is the wave number. The incident sinusoidal waves are generated
at the left boundary and the radiation boundary condition is imposed on the right. The free-surface
elevations are recorded at eight gauges over and behind the bar as in the laboratory experiment.
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Figure 3. Definition sketch of wave transformation over a submerged bar: (a) laboratory setup and
(b) numerical model setup. ◦, gauge locations.

Figure 4 shows the computed and recorded waveforms at the eight gauges. The measured data
at gauge 4 provide a reference for adjustment of the timing of computed waveforms. The present
model with either the upwind flux approximation (13a and 13b) or the second-order scheme
(15a and 15b) in the continuity equation reproduces the wave transformation at gauge 4 over the
front slope and at gauge 5 immediately behind the front slope. The computed results maintain
good agreement with the laboratory data at gauges 6–8 over the crest and the lee slope, where
the waveform undergoes significant transformation with high-frequency dispersion. Noticeable
discrepancies arise between the computed and recorded waveforms over the flat bottom behind the
bar, where the laboratory data from gauges 9–11 show evidence of super-harmonics around a 1 s
period. These second-order waves, which correspond to kh=1.7 behind the bar, are well beyond
the applicable range of the present non-hydrostatic approximation.

Overall, the upwind flux approximation (13a and 13b) and the second-order scheme (15a and
15b) in the present model provide the same or slightly better results compared with Stelling
and Zijlema [12] and Walters [15]. The present and previously computed waveforms are almost
identical, when the depth-integrated models are within the applicable range of the non-hydrostatic
approximation. The high-frequency waves behind the bar exceed the applicable dispersion range of
the depth-integrated formulation. Under these critical conditions, the second-order scheme provides
larger wave amplitudes, which can be seen at gauges 7–10, especially at gauge 9. This alludes to
the importance of the upwind flux approximation in maintaining numerical stability of the model
especially when implemented outside its applicable range.

4.3. Solitary wave run-up on a plane beach

Hall and Watts [29], Li and Raichlen [30], and Synolakis [31] conducted series of laboratory
experiments for solitary wave transformation and run-up on a plane beach. These experiments,
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Figure 4. Comparison of computed and measured free-surface elevations over and behind a submerged
bar. ◦, laboratory data of Beji and Battjes [27]; —– (red), non-hydrostatic model with upwind flux scheme;

- - - - (blue), second-order scheme.

which cover a wide range of non-breaking and breaking waves, have become an accepted test case
for validation of run-up models [20, 30, 32, 33]. Figure 5 provides a schematic of the experiments
with A indicating the incident solitary wave height, � the beach slope, and R the run-up. Following
Titov and Synolakis [32], the solitary wave is initially at half wavelength from the toe of the beach
in the numerical experiment. The approximate wavelength of a solitary wave is given by

L= 2

k
arccosh

(√
1

0.05

)
(40)

in which the wave number k=√3A/4h3. In the numerical experiment, we use �x/h=0.125 and
a Courant number Cr=0.2. Surface roughness becomes important for run-up over gentle slopes
and a Manning’s coefficient n=0.01 describes the surface condition of the smooth glass beach in
the laboratory experiments.
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Figure 5. Definition sketch of solitary wave run-up on a plane beach.

Titov and Synolakis [32] present a series of surface profiles with a beach slope of 1:19.85
and solitary wave heights of up to A/h=0.3. Initial testing with this experiment reiterates and
furthers the findings from the wave transformation experiment in Section 4.2. The upwind flux
approximation of the surface elevation is essential in maintaining stability of the depth-integrated
non-hydrostatic model, especially when flow discontinuities associated with breaking waves and
hydraulic jumps develop. The second-order scheme produces spurious waves near the discontinuity
that lead to development of instabilities in most of the tests. As a result, we use the upwind flux
approximation in the model throughout this test case and examine the treatment of the advective
terms in the momentum equations by presenting results with and without the momentum-conserved
advection approximation (20)–(25b). When this scheme is off, the advective terms are computed
directly from (14).

Figure 6 shows a comparison of the measured profiles with the two sets of numerical results
for the test case with the solitary wave height A/h=0.3. The laboratory data show wave breaking
between t (g/h)1/2=20 and 25 as the solitary wave reaches the beach and development of a
hydraulic jump at t (g/h)1/2=50 when the water recedes from the beach. Both numerical solutions
show very good agreement with the laboratory data as the solitary wave shoals to its maximum
height at t (g/h)1/2=20. The momentum-conserved advection scheme reproduces the subsequent
wave breaking without the use of predefined criteria and matches the surface elevation and run-up
on the beach. Without the momentum-conserved advection, the model cannot reproduce the surface
profile at t (g/h)1/2=25 immediately after wave breaking and underestimates the surface elevation
on the beach and eventually the run-up. Both solutions describe the surface elevation reasonably
well during the drawdown process. A minor discrepancy on the location of the hydraulic jump
occurs around the peak of the return flow at t (g/h)1/2=55. The finite volume model of Wei
et al. [33] also produces a similar discrepancy with the laboratory data. This may attribute to the
three-dimensional flow structure that is not amendable to depth-integrated solutions. The agreement
resumes as the speed of the return flow decreases demonstrating the resilience of the model.

Figure 7 shows the computed and measured run-up R/h as a function of the solitary wave height
A/h for beach slopes of 1:5.67, 1:15, and 1:19.85. The measured data show a bilinear distribution
with the two branches representing the non-breaking and breaking regimes separated by a transition.
Figure 7(a) shows good agreement of the two solutions with the laboratory data for non-breaking
and breaking wave run-up on the 1:5.67 slope. This steep slope most likely produces surging
wave breakers that are amendable to non-hydrostatic models without special treatments to the
momentum equations. Wave breaking becomes more energetic and the resulting surface elevation
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Figure 6. Surface profiles of a solitary wave on a 1:19.85 plane beach with A/h=0.3. ◦, laboratory data
of Titov and Synolakis [32]; —— (red), non-hydrostatic model with momentum-conserved advection;

- - - - (blue), without momentum-conserved advection.

becomes discontinuous as the beach slope decreases. In Figure 7(b) and (c), the computed run-up
from the momentum-conserved advection scheme shows excellent agreement with the laboratory
data for both non-breaking and breaking waves. Without the momentum conservation, the solution
reproduces the run-up in the non-breaking and transition regimes, but underestimates the measured
run-up for breaking waves with A/h>0.1. This shows that implementation of the momentum-
conserved advection in a non-hydrostatic model can capture discontinuous flows associated with
energetic wave breaking and describe the subsequent run-up on the beach for the full range of
solitary wave height.
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Figure 7. Solitary wave run-up on a plane beach as a function of incident wave height: (a) 1/5.67
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4.4. Solitary wave run-up on a conical island

Briggs et al. [34] conducted a large-scale laboratory experiment to investigate solitary wave run-up
on a conical island. The collected data have become a standard for validation of run-up models
[4, 6, 19, 20, 33]. Figure 8 shows a schematic of the experiment. The basin is 25m long and 30m
wide. The circular island has the shape of a truncated cone with diameters of 7.2m at the base
and 2.2m at the crest. The island is 0.625m high and has a side slope of 1:4. The surface of
the island and basin has a smooth concrete finish. A 27.4m long directional spectral wave maker,
which consists of 61 paddles, generates solitary waves for the experiment. Wave absorbers at the
three sidewalls reduce reflection.
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Figure 8. Schematic sketch of the conical island experiment: (a) plane view and
(b) side view. ◦, gauge locations.
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The experiment covers the water depths h=0.32 and 0.42m and the solitary wave heights
A/h=0.05,0.1, and 0.2. The present study considers the smaller water depth h=0.32m, which
provides a more critical test case for the model. In the computation, the solitary wave is generated
from the left boundary with the measured initial wave heights of A/h=0.045, 0.096, and 0.181.
These measured wave heights in the laboratory experiment, instead of the target wave heights
A/h=0.05,0.1, and 0.2, better represent the recorded data at gauge 2 and thus the incident wave
conditions to the conical island. The radiation condition is imposed at the lateral boundaries to
model the effects of the wave absorbers. We use �x =�y=5cm, �t=0.01s, and a Manning’s
roughness coefficient n=0.016 for the smooth concrete finish. Since wave breaking occurred
during the laboratory experiment, we use the upwind flux approximation in the computation to
model the processes.

The solution obtained with the momentum-conserved advection scheme provides an illustration
of the solitary wave transformation around the conical island. Figure 9 shows the results when the
wave reaches the maximum elevation on the front face of the island and 2 s afterward. Because
the celerity increases with the wave height, the arrival time of the solitary wave is 1.4 s apart for
the wave height range considered. The three test cases show refraction and trapping of the solitary
wave over the island slope. The left panels of Figure 10 show that the trapped waves from the
two sides superpose with the diffracted wave at the lee side of the island. Wave breaking occurs
locally for A/h=0.096 and everywhere around the island for A/h=0.181 [6]. This reduces the
subsequent run-up on the lee side of the island. The right panels show the free surface 2 s later
when the trapped waves have passed each other and continue to wrap around to the front. Munger
and Cheung [35] reported similar trapped waves around the Hawaiian Islands generated by the
2006 Kuril Islands tsunami that lasted for two days.

The free surface is rather smooth with indistinguishable frequency dispersion before the wave
wraps around the island. As the solitary wave travels down the basin, high-frequency dispersive
waves become evident around the island especially on the lee side. The test case with A/h=0.181
provides a vivid depiction of the generation and propagation of the dispersive waves. Figures 9(c)
and 10(c) show the generation of the first group of dispersive waves as the trapped waves wrap
around the island and collide on the lee side. After the collision, the second group of dispersive
waves is generated due to energy leakage from the two trapped waves that continue to wrap around
to the front. The interaction of the first and second groups of dispersive waves generates a mesh-
like wave pattern behind the island. These high-frequency dispersive waves provide an explanation
for the 3–5min edge waves recorded on the south shore of Oahu after the 2006 Kuril Islands
tsunami that a nonlinear shallow-water model cannot reproduce even with a 10m computational
grid [36].

A number of gauges recorded the transformation of the solitary wave around the conical island.
Figure 11 shows the time series of the solutions with and without the momentum-conserved
advection scheme and the measured free-surface elevations at selected gauges. With reference
to Figure 8, gauges 2 and 6 are located in front of the island and 9, 16, and 22 are placed
just outside the still waterline around the island. These gauges provide sufficient coverage of
the representative wave conditions in the experiment. The measured data at gauge 2 provide a
reference for adjustment of the timing of the computed waveforms. Both solutions show excellent
agreement with the measured time series including the depression following the leading wave that
was not adequately reproduced in previous studies. The momentum-conserved advection scheme
reasonably describes the phase of the peak, but slightly overestimates the leading wave amplitude
at gauges 9 and 22 as the wave height increases. Without the momentum conservation, the model
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generally reproduces the leading wave amplitude except at gauge 22 with A/h=0.181, where
the model fails to fully capture the energetic breaking wave on the lee side of the island. This
reiterates the importance of the momentum-conserved advection scheme in capturing breaking
waves.

Figure 12 shows comparisons of the measured and computed inundation and run-up around the
conical island. Both solutions from the present model are almost identical and show good agreement
with the laboratory data. The momentum-conserved advection produces better estimations at the
lee flank of island around 90−160◦, where the run-up is lowest. For the results presented in

Figure 9. Wave transformation in front of the conical island: (a) A/h=0.045;
(b) A/h=0.096; and (c) A/h=0.181.
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Figure 10. Wave transformation on the lee side of the conical island: (a) A/h=0.045;
(b) A/h=0.096; and (c) A/h=0.181.

Figures 11 and 12, both solutions are comparable or slightly better than the extended Boussinesq
solutions of Chen et al. [19] and Lynett et al. [20] that use empirical relations with adjustable
coefficients to describe wave breaking. Most of the previous studies neglected friction in this
numerical experiment [4, 6, 19, 20]. We also tested the model with n=0.0 and obtained very similar
results as n=0.016. As pointed out in Liu et al. [4], the computed results are not sensitive to the
surface roughness coefficient due to the steep 1:4 slope of the conical island. The overall agreement
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Figure 11. Time series of surface elevations at gauges around a conical island: (a) A/h=0.045;
(b) A/h=0.096; (c) A/h=0.181. ◦, laboratory data from Briggs et al. [34]; —— (red), non-hydrostatic

with momentum-conserved advection; - - - - (blue), without momentum-conserved advection.

between the computed results and laboratory data indicates the capability of the present model to
estimate wave transformation, breaking, and inundation in the two horizontal dimensions.

Numerical models for tsunami flood hazards need to deal with wave dispersion in basin-wide
propagation and flow discontinuities due to wave breaking near shore, but at the same time,
must be articulate, stable in dealing with flows over complex topography, and efficient for large
computational problems. The present depth-integrated, non-hydrostatic model with a semi-implicit
scheme appears to satisfy these requirements for practical application. The computing time depends
on the grid size and number of iterations in the non-hydrostatic solver. For the results presented in
this paper, the computing time is about 2–2.5 times in comparison with the hydrostatic solution.
The turn-around time can be reduced through parallel computing. The model results are very
stable and do not show any spurious oscillations even with the most energetic wave-breaking
conditions. Among the existing dispersive models, the present model utilizes the simplest dispersive
term, which is only the first derivative of the non-hydrostatic pressure. This would be the reason
for the stability achieved by the present model without any spatial filtering of the solution. The
use of the upwind flux approximation of the surface elevation in the continuity and momentum
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Figure 12. Inundation and run-up around a conical island: (a) A/h=0.045; (b) A/h=0.096; (c)
A/h=0.181. ◦, laboratory data from Briggs et al. [34]; —— (red), non-hydrostatic model with

momentum-conserved advection; - - - - (blue), without momentum-conserved advection.

equations further improves the model stability and becomes essential with wave breaking. This
portends well for the implementation of the present non-hydrostatic model with realistic topography
as already demonstrated by Kowalik et al. [22] for the hydrostatic part of the model. Future
applications include tsunami inundation mapping and forecasting along with the inverse algorithm
[37–39].

5. CONCLUSIONS

This paper describes a depth-integrated, non-hydrostatic model for wave propagation, transfor-
mation, breaking, and run-up. The formulation decomposes the pressure into hydrostatic and
non-hydrostatic components and introduces a vertical velocity in response to the non-hydrostatic
pressure. The hydrostatic component is equivalent to a nonlinear shallow-water model with an
explicit scheme, and an implicit scheme provides the non-hydrostatic pressure through the three-
dimensional continuity equation. A unique feature of the model is the use of an upwind flux
approximation, which extrapolates the free-surface elevation instead of the flow depth, in the
computation of the continuity equation and the momentum-conserved advection.

The present depth-integrated dispersive model is equivalent to those based on the classical
Boussinesq equations for weakly dispersive waves. The upwind flux approximation in the continuity
equation has little effect on wave propagation, while it is essential for providing stable solutions
when energetic wave breaking occurs. The momentum-conserved advection scheme captures flow
discontinuities associated with breaking waves as bores and hydraulic jumps and reproduces the
results in the plane-beach and conical island run-up experiments. The model can describe wave
breaking over steep slope without the momentum-conserved advection, but underestimates the
run-up on gentle slope, when breaking becomes more energetic.
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The present model provides comparable results with existing depth-integrated, non-hydrostatic
models in wave propagation and transformation, and similar or slightly better estimates than
extended Boussinesq models in wave transformation and run-up in the test cases considered. In
contrast to Boussinesq-type models, the present model does not require empirical relations or
dissipation coefficients for wave breaking and the results remain stable without artificial filtering.
The semi-implicit scheme is efficient for large computational problems in practical applications.
The proposed non-hydrostatic formulation provides a useful scheme to adapt existing nonlinear
shallow-water models for breaking and weakly dispersive waves and extend their usefulness in
modeling and assessment of tsunami flood hazards.
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