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SUMMARY

Tsunamis generated by earthquakes involve physical processes of different temporal and spatial scales
that extend across the ocean to the shore. This paper presents a shock-capturing dispersive wave model
in the spherical coordinate system for basin-wide evolution and coastal run-up of tsunamis and discusses
the implementation of a two-way grid-nesting scheme to describe the wave dynamics at resolution
compatible to the physical processes. The depth-integrated model describes dispersive waves through the
non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from dynamic
seafloor deformation. The semi-implicit, finite difference model captures flow discontinuities associated
with bores or hydraulic jumps through the momentum-conserved advection scheme with an upwind flux
approximation. The two-way grid-nesting scheme utilizes the Dirichlet condition of the non-hydrostatic
pressure and both the horizontal velocity and surface elevation at the inter-grid boundary to ensure
propagation of dispersive waves and discontinuities across computational grids of different resolution. The
inter-grid boundary can adapt to bathymetric features to model nearshore wave transformation processes
at optimal resolution and computational efficiency. A coordinate transformation enables application of the
model to small geographic regions or laboratory experiments with a Cartesian grid. A depth-dependent
Gaussian function smoothes localized bottom features in relation to the water depth while retaining the
bathymetry important for modeling of tsunami transformation and run-up. Numerical experiments of
solitary wave propagation and N -wave run-up verify the implementation of the grid-nesting scheme. The
2009 Samoa Tsunami provides a case study to confirm the validity and effectiveness of the modeling
approach for tsunami research and impact assessment. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tsunamis generated by earthquakes are commonly modeled as non-dispersive long waves with a
spherical coordinate system for their propagation around the globe [1–4]. Nonlinear shallow-water
models based on the finite difference method can describe basin-wide evolution and coastal run-up
of tsunamis through a series of nested grids [5–8]. These explicit schemes, which provide efficient
solutions to large computational problems, have become an indispensable tool for flood hazard
mapping and assessment. Consistent with the shallow-water approach, the initial tsunami wave
assumes the vertical component of the seafloor deformation due to earthquake rupture [9]. This
static initial condition in lieu of the tsunami generation mechanism provides a practical method
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for modeling of real-field tsunamis. Recent studies, however, suggest that wave dispersion and
breaking as well as dynamic seafloor deformation could have non-negligible effects on the tsunami
evolution and run-up processes [10–13].

The nonlinear shallow-water equations are hydrostatic and unable to describe wave dispersion.
Although tsunamis are primarily shallow-water waves, dispersive effects might become important
for basin-wide propagation and nearshore transformation. Through a classical Boussinesq model,
Horrillo et al. [11] showed that wave dispersion in tsunami propagation results in a sequence of
trailing waves that have significant effects on coastal run-up. The solitary wave experiment of Brigg
et al. [14] and the tsunami measurements of Bricker et al. [15] reveal intricate dispersive wave
patterns on the leeside of islands that cannot be reproduced by nonlinear shallow-water models.
Boussinesq-type models, however, involve a complex equation system with high-order dispersion
terms that might not be amenable to the grid-nesting schemes used in tsunami modeling [5–8].
In contrast, Stelling and Zijlema [16] proposed an alternate depth-integrated formulation, which
introduces non-hydrostatic pressure and vertical velocity terms in the nonlinear shallow-water
equations to describe weakly dispersive waves. The dispersion terms involve only first-order
derivatives of the non-hydrostatic pressure that can be resolved by a low-order scheme. These semi-
implicit finite-difference models produce comparable or better results in comparison to Boussinesq-
type models [16, 17] and have the potential to describe basin-wide evolution as well as coastal
run-up of tsunamis through a grid-nesting scheme.

The commonly used finite difference schemes in the solution of the nonlinear shallow-water
equations are non-conservative leading to volume loss and energy dissipation as the wave steepness
increases and the flow approaches discontinuous. This turns out to be a crucial modeling issue
when tsunami bores develop nearshore and the results become grid-size dependent. Excessive
energy dissipation and volume loss lead to underestimation of the flow and run-up with unintended
consequences in tsunami hazard assessment. The finite volume method based on the conservative
form of the nonlinear shallow-water equations captures flow discontinuities and conserves flow
volume through a Godunov-type scheme involving a Riemann solver [12, 18–20]. This approach
approximates breaking waves as bores or hydraulic jumps through conservation of momentum
and accounts for energy dissipation across flow discontinuities without the use of empirical rela-
tions. Stelling and Duinmeijer [21] developed an equivalent shock-capturing scheme for finite
difference models based on the nonlinear shallow-water equations. This momentum-conserved
advection scheme, which is derived from the conservative formulation of the momentum equations,
produces comparable results as a Riemann solver in shallow-water flows. Zijlema and Stelling
[22] and Yamazaki et al. [17], respectively, applied the momentum-conserved advection scheme
in a two-layer and a depth-integrated non-hydrostatic model for breaking of dispersive waves with
encouraging results.

Recent advances in seismic inverse algorithms [23, 24] enable accurate descriptions of rise time
and rupture propagation over the source area. This provides time series of the seafloor vertical
displacement and velocity that constitute the bottom boundary condition of a non-hydrostatic
model for transfer of kinetic and potential energy to the water. It is timely to implement a
dispersive and shock-capturing model for better description of the physics in tsunami generation,
propagation, and run-up. This involves reformulation of the depth-integrated non-hydrostatic model
of Yamazaki et al. [17] in the spherical coordinate system with dynamic seafloor deformation and
implementation of a two-way grid-nesting scheme, which can conform to topographic features for
efficient computation of tsunami propagation and coastal run-up. Numerical modeling of solitary
wave propagation in a channel and N -wave run-up in the Monai Valley laboratory experiment
[25] provides verification of the grid-nesting scheme. However, dispersive wave models based on
non-hydrostatic or Boussinesq-type formulations are prone to instabilities created by localized,
steep bottom gradients [11, 26]. We propose a depth-dependent Gaussian function for smoothing
of bathymetric features smaller than the water depth to improve stability and convergence of the
semi-implicit, non-hydrostatic solution. The 2009 Samoa Islands Tsunami, with advanced source
mechanisms and well-recorded water-level and run-up data, provides a test case to validate and
demonstrate the proposed modeling approach for real-field events.
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2. DEPTH-INTEGRATED NON-HYDROSTATIC MODEL

This section reformulates the depth-integrated, non-hydrostatic model of Yamazaki et al. [17] in the
spherical coordinate system for basin-wide tsunami propagation. The vertical velocity associated
with the non-hydrostatic pressure allows implementation of a movable seafloor boundary condition
to model tsunami generation. The finite difference scheme utilizes an upwind flux approxima-
tion [17, 27, 28] in the discretization of the governing equations and enforces momentum conser-
vation in the numerical scheme to capture flow discontinuities associated with bores and hydraulic
jumps.

2.1. Theoretical formulation

The boundary-value problem is defined by a spherical coordinates system (�,�, z), in which
� is longitude, � is latitude, and z denotes the normal distance from the ocean surface. The
governing equations for the depth-integrated, non-hydrostatic flow are derived from the incom-
pressible Navier–Stokes equations and the continuity equation in the form:
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where R is the earth’s radius; (u,v,w) is flow velocity; t is time; � is the earth’s angular velocity;
� is water density; p is pressure; g is gravitational acceleration; and (A�, A�, Az) is the viscous
force [3, 29].

Figure 1 provides a schematic of the free-surface flow generated by seafloor deformation. The
boundary conditions at the free surface and seafloor facilitate the formulation of the depth-integrated
governing equations. The flow depth is the distance between the two boundaries defined as

D=�+(h−�) (5)

Figure 1. Schematic of free-surface flow generated by seafloor deformation.
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where � is the surface elevation from the still-water level, h is the water depth, and � is the
seafloor displacement. Material derivatives of the surface elevation and water depth give rise to
the kinematic free surface and seafloor boundary conditions as

w= ��
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The vertical velocity w varies linearly from the seafloor to the free surface for modeling of weakly
dispersive waves in depth-integrated flows. Following Casulli [30], the pressure is decomposed
into hydrostatic and non-hydrostatic components as

p=�g(�−z)+�q (8)

where q denotes the non-hydrostatic pressure. Both the hydrostatic and non-hydrostatic pressure
terms vanish at z=� to provide the dynamic free surface boundary condition.

Depth integration of (1), (2), and (4) and linearization of (3) taking into account the boundary
conditions (6) and (7) and the pressure decomposition (8), give rise to the depth-integrated, non-
hydrostatic governing equations in the spherical coordinates. The resulting �, �, and z momentum
equations as well as the continuity equation are
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where U , V , and W are depth-averaged velocity components in the �, �, and z directions; q is now
defined as the non-hydrostatic pressure at the seafloor; and n is Manning’s coefficient accounting for
the surface roughness. Because of the assumption of a linear distribution, the velocity component
W is simply the average value of w at the free surface and the seafloor given, respectively, by (6)
and (7).

2.2. Numerical formulation

The numerical formulation includes the solution schemes for the hydrostatic and non-hydrostatic
components of the governing equations as well as the coordinate transformation from spherical to
Cartesian grids. Figure 2 shows the space-staggered grid for the computation. The model calculates
the horizontal velocity components U and V at the cell interface and the free surface elevation �,
the non-hydrostatic pressure q, and the vertical velocity W at the cell center, where the water depth
h is defined.

Integration of the continuity equation (4) provides an update of the surface elevation at the
center of cell ( j,k) in terms of the fluxes, FLX and FLY along the longitude and latitude, at the
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Figure 2. Definition sketch of the discretization scheme.

cell interfaces as
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where m denotes the time step, �t the time step size, and � � and �� the respective grid sizes.
The flux terms at ( j,k) are estimated using the upwind flux approximation of Mader [27] as
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The upwind flux approximation (14) extrapolates the surface elevation from the upwind cell, while
the water depth takes on the average value from the two adjacent cells. The horizontal momentum
equations provide the velocity components U and V at (m+1) in (14) for the update of the surface
elevation in (13). Integration of the momentum equations (9) and (10) is performed in two steps.
With the non-hydrostatic terms omitted, an explicit hydrostatic solution is given by
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where the subscripts p and n indicate upwind and downwind approximations of the advective
speeds and the over bar denotes average quantities.

The momentum-conserved advection scheme of Stelling and Duinmeijer [21] approximates
breaking waves as bores or hydraulic jumps and conserves flow volume across discontinuities.
Based on their formulation, Yamazaki et al. [17] provides the advective speeds in the momentum
equations as
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The upwind scheme of Mader [27] determines the flux terms in (19) through extrapolation of the
surface elevation instead of the flow depth for improved stability. The flux for a positive flow in
the � direction (Um

j,k>0) is given by
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Based on the same approach, the flux for a positive flow in the � direction (Vm
j,k>0) is given by
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and the flux for a negative flow (Vm
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The advective speeds Ūyp and Ūyn in the �-momentum equation (17) can be obtained from (18)
to (20) by replacing Um

j,k, �mj,k, �mj,k, and h j,k with average values defined as
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This completes the explicit numerical scheme for the nonlinear shallow-water equations in
describing hydrostatic flows.

The numerical scheme for the non-hydrostatic solution is implicit. Integration of the non-
hydrostatic terms in the horizontal momentum equations updates the horizontal velocity from (16)
and (17) to
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Discretization of the vertical momentum equation (11) gives the vertical velocity at the free
surface as
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The vertical velocity on the seafloor is evaluated from the boundary condition (7) as

wm+1
b j,k

=
�m+1
j,k −�mj,k

�t
−Ūm

z p

(h j,k−�mj,k)−(h j−1,k−�mj−1,k)

R��cos�k
−Ūm

zn

(h j+1,k−�mj+1,k)−(h j,k−�mj,k)

R��cos�k

−V̄ m
z p

(h j,k−�mj,k)−(h j,k−1−�mj,k−1)

R��
− V̄ m

zn

(h j,k+1−�mj,k+1)−(h j,k−�mj,k)

R��
(27)

in which

Ūm
z p =

Ūm
z j,k +|Ūm

z j,k |
2

, Ūm
zn =

Ūm
z j,k −|Ūm

z j,k |
2

; V̄ m
z p =

V̄ m
z j,k +|V̄ m

z j,k |
2

, V̄ m
zn =

V̄ m
z j,k −|V̄ m

z j,k |
2

(28)

where

Ūm
z j,k =

Um
j,k+Um

j+1,k

2
, V̄ m

z j,k =
Vm
j,k+Vm

j,k−1

2
(29)

The horizontal velocity components and the vertical velocity at the free surface are now expressed
in terms of the non-hydrostatic pressure.

The non-hydrostatic pressure qm+1
j,k is calculated implicitly using the continuity equation (4)

discretized in the form

Um+1
j+1,k−Um+1

j,k

R��cos�k
+

Vm+1
j,k cos(�k+��/2)−Vm+1

j,k−1 cos(�k−1+��/2)

R��cos�k
+

wm+1
s j,k −wm+1

b j,k

Dm
j,k

=0 (30)

Substitution of (23), (24), and (26) into the continuity equation (30) gives a linear system of
Poisson-type equations at each cell

PL j,kq
m+1
j−1,k+PR j,kq

m+1
j+1,k+PB j,kq

m+1
j,k−1+PTj,kq

m+1
j,k+1+PC j,kq

m+1
j,k =Q j,k (31)

where the coefficients are

PL j,k= 1

cos�2
k

�t

2(R��)2
(−1+A j,k) (32a)

PR j,k = 1

cos�2
k

�t

2(R��)2
(−1−A j+1,k) (32b)

PB j,k= cos(�k−1+��/2)

cos�k

�t

2(R��)2
(−1+B j,k−1) (32c)

PTj,k= cos(�k+��/2)

cos�k

�t

2(R��)2
(−1−B j,k) (32d)
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PC j,k = 1

cos�2
k

�t

2(R��)2
[(1+A j,k)+(1−A j+1,k)]

+ 1

cos�k

�t

2(R��)2
[(1+B j,k−1)cos(�k−1+��/2)+(1−B j,k)cos(�k+��/2)]

+ 2�t

(Dm
j,k)

2 (32e)

and the forcing term is

Q j,k = −
Ũm+1

j+1,k−Ũm+1
j,k

R��cos�k
−

Ṽ m+1
j,k cos(�k+��/2)− Ṽ m+1

j,k−1 cos(�k−1+��/2)

R��cos�k

−
wm
s j,k +wm

bj,k
−2wm+1

b j,k

Dm
j,k

(33)

The terms A j,k, B j,k, and Q j,k describe the seafloor, free-surface, and velocity gradients in the
generation and modification of dispersive waves. Assembly of (31) at all grid cells gives rise to a
matrix equation in the form of

[P]{q}={Q} (34)

which provides the non-hydrostatic pressure at each time step. The matrix equation (34), in which
[P] is nonsymmetric, can be solved by the strongly implicit procedure (SIP) of Stone [31]. At each
time step, the computation starts with the calculation of the hydrostatic solution of the horizontal
velocity using (16) and (17). The non-hydrostatic pressure is then calculated using (34) and the
horizontal velocity is updated with (23) and (24) to account for the non-hydrostatic effects. The
computation for the non-hydrostatic solution is complete with the calculation of the free surface
elevation as well as the free surface and the bottom vertical velocities from (13), (26), and (27),
respectively.

The governing equations in the spherical coordinate system (�,�) can be transformed into the
Cartesian system (x, y) for modeling of a coastal region or a laboratory experiment. Effects of the
earth’s curvature is insignificant and the grid spacing in the x and y directions becomes

�x = R��cos�k, �y= R�� (35)

The Coriolis terms in the horizontal momentum equations (16) and (17) vanish(
2�+

Um
j,k

R cos�k

)
V̄ m
x j,k sin�k =0 (36a)

(
2�+

Ūm
y j,k

R cos(�k+��/2)

)
Ūm

y j,k sin(�k+��/2)=0 (36b)

Since the grid cells do not taper off in the north–south direction, we can simply set �=0. These
modifications will recover the numerical formulation in the Cartesian coordinate system as derived
by Yamazaki et al. [17].

3. NUMERICAL IMPLEMENTATION

The depth-integrated, non-hydrostatic model provides a general framework to describe dispersion
and breaking of ocean waves over variable bottom. This section discusses its implementation
with a two-way grid-nesting scheme and a bathymetry-smoothing strategy for modeling of the
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Figure 3. Schematic of a two-level nested grid system.

tsunami evolution processes from generation to run-up. The grid-nesting scheme utilizes a flexible
indexing system that enables adaptation of inter-grid boundaries to topographic features for optimal
resolution and computational efficiency. The smoothing scheme generalizes the stability criterion
of Horrillo et al. [11] to remove small-scale bathymetric features in relation to the water depth
that cannot be resolved by non-hydrostatic or Boussinesq-type models.

3.1. Grid-nesting scheme

Most grid-nesting schemes for tsunami models use a system of rectangular grids with the fluxes
as input to a fine inner grid and the surface elevation as output to the outer grid [5, 6, 8]. A non-
hydrostatic model needs to input the horizontal velocity, surface elevation as well as the non-
hydrostatic pressure to ensure propagation of breaking and dispersion waves across inter-grid
boundaries. Figure 3 illustrates the grid setup and data transfer protocol. The outer and inner grids
align at the cell centers, where they share the same water depth. The scheme allows the flexibility
to define inter-grid boundaries at any location within the inner grid network analogous to the
quadtree and adaptive grids [32–34]. The surface elevation and non-hydrostatic pressure are input
at the cell centers as indicated by the red dots in the figure. While the tangential component of the
velocity is applied along the inter-grid boundary, the normal component is applied on the inboard
side of the boundary cells as indicated by the red dash. Existing grid-nesting schemes, which only
input the normal velocity, cannot handle propagation of discontinuities and Coriolis effects across
inter-grid boundaries.
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Figure 4. Schematic of two-way grid-nesting and time-integration schemes.

Figure 4 shows a schematic of the solution procedure with the two-way grid-nesting scheme.
The time step �t1 of the outer grid must be divisible by the inner-grid time step �t2. The calculation
begins at time t with the complete solutions at both the outer and inner grids. The time-integration
procedure provides the solution over the outer grid at (t+�t1). Linear interpolation of the horizontal
velocity, surface elevation, and non-hydrostatic pressure in time and space provides the input
boundary conditions to the inner grid. The time-integration procedure then computes the inner
grid solution at �t2 increments until (t+�t1). The hydrostatic solution is computed explicitly from
the input surface elevation and horizontal velocity. The non-hydrostatic solution is implicit and
requires reorganization of the matrix equation (34) for the input non-hydrostatic pressure from the
outer grid. The simple dispersive terms with first-order derivatives allow implementation of the
Dirichlet condition to enable wave dispersion across inter-grid boundaries. After the computation
in the inner grid reaches (t+�t1), the surface elevation at the outer grid is then updated with
the average value from the overlapping inner grid cells to complete the procedure. This feedback
mechanism is similar to the grid-nesting scheme of Goto et al. [6] for hydrostatic models.

The implementation of the Dirichlet boundary condition requires modification of the Poisson-
type equation (31) at the cells along the inter-grid boundary. For example, if the non-hydrostatic
pressure is input from the left (west), the corresponding pressure term becomes part of the forcing
on the right-hand side as

PR j,kq
m+1
j+1,k+PB j,kq

m+1
j,k−1+PTj,kq

m+1
j,k+1+PC j,kq

m+1
j,k =Q j,k−PL j,kq

m+1
j−1,k (37)

Similarly, if the non-hydrostatic pressure is defined at the bottom (south), (31) becomes

PL j,kq
m+1
j−1,k+PR j,kq

m+1
j+1,k+PTj,kq

m+1
j,k+1+PC j,kq

m+1
j,k =Q j,k−PB j,kq

m+1
j,k−1 (38)

When the non-hydrostatic pressure is input from the left (west) and bottom (south), the Dirichlet
boundary condition gives rise to

PR j,kq
m+1
j+1,k+PTj,kq

m+1
j,k+1+PC j,kq

m+1
j,k =Q j,k−PL j,kq

m+1
j−1,k−PB j,kq

m+1
j,k−1 (39)

Similar equations can be defined for cells with input from the right (east) and top (north). This
approach allows implementation of the Dirichlet boundary condition along irregular inter-grid
boundaries to construct the matrix equation (34), from which the non-hydrostatic pressure in the
inner grid can be determined.
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3.2. Bathymetry smoothing schemes

The present depth-integrated, non-hydrostatic model is generally stable, but the implicit solver for
the non-hydrostatic pressure does not always converge when the bathymetry includes small features
relative to the water depth. Horrillo et al. [11] discussed similar convergence issues with the disper-
sion terms in the classical Boussinesq equations and derived the stability criterion �x>1.5h from
their numerical formulation. Løvholt and Pederson [26] also showed that Boussinesq-type models
are prone to instability over localized, steep bottom gradients at high-resolution computations.
They pointed out that the instability is probably due to the dispersion terms. If the instability
is inherent in the theoretical formulation, it is difficult to resolve the issue through refinements
of numerical schemes. Smoothing of the bathymetry appears to be a typical solution to stability
problems associated with Boussinesq-type models, although Plant et al. [35] pointed out such
numerical treatments might alter the wave field in the near-shore region.

Preliminary numerical tests have shown that the present implicit solver could achieve conver-
gence for flow over irregular bathymetry with properly selected grid sizes in relation to the water
depth. Such an approach, however, is not feasible as a treatment for local bathymetric features
with steep gradients in the open ocean. We utilize a depth-dependent Gaussian function to resolve
stability issues arising from local bathymetric features in deep water and to minimize unnecessary
alternations of the bathymetry in near-shore waters. The smoothing scheme has a variable search
diameter in terms of the water depth h j,k as

�Dj,k =�h j,k (40)

where �>1.5 in accordance to the stability criterion of Horrillo et al. [11]. In the implementation,
the smoothed water depth is given by

h j,k=
j+n/2∑

j̃= j−n/2

k+n/2∑
k̃=k−n/2

w j̃,k̃ho j̃,k̃ (41)

where w j̃,k̃ is a weight function, ho j̃ ,k̃ is the original bathymetry, and n is the number of grid cells
within the search diameter �Dj,k . The weight function is expressed as

w j̃,k̃ =G j̃,k̃

⎛
⎝ j+n/2∑

ĵ= j−n/2

k+n/2∑
k̂=k−n/2

G ĵ,k̂

⎞
⎠

−1

(42)

in which the Gaussian function is defined as

G j̃,k̃ = 2

��D2
j,k

exp

⎛
⎝−

2r2
j̃,k̃

�D2
j,k

⎞
⎠ (43)

where r j̃,k̃ is the distance between the points ( j̃ , k̃) and ( j,k). This scheme smoothes features
with characteristic dimensions less than �h to accommodate smaller computational cells to resolve
dispersive waves in the open ocean.

The use of nested grids requires additional attention with complex bathymetry and topography.
The grid resolution changes abruptly from one level to the next. The resolution of the relief data
needs to transition gradually across inter-grid boundaries to facilitate exchange of compatible flow
parameters. We interpolate the outer grid bathymetry at the inner grid cells along the inter-grid
boundary and gradually transition the resolution of the bathymetry to that of the inner grid over
two outer grid cells. The interpolation scheme assures that the solutions in the inner and outer grids
are computed from the same bathymetry along the inter-grid boundary. This procedure becomes
imperative in coastal waters when the inter-grid boundary intersects the coastline and interpolation
of flow parameters occurs across the wet-dry boundary.
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4. VERIFICATION OF GRID-NESTING SCHEME

The proposed grid-nesting scheme is unique among existing approaches and needs a systematic
evaluation prior to its implementation for modeling of real-field tsunamis. We first verify the
grid-nesting scheme through numerical experiments of solitary wave propagation in a channel and
N -wave run-up in a laboratory basin. The coordinate transformation (37) and (38) reduces the
computational grids to the Cartesian system because of the small computational domains, but the
grid-nesting scheme remains the same.

4.1. Solitary wave propagation

The propagation of a solitary wave in uniform water depth is a standard test case for dispersive wave
models. This represents a delicate balance between nonlinear steepening and dispersive spreading
to provide a critical test for the grid-nesting scheme. The model must accurately transfer the flow
kinematics and non-hydrostatic pressure and balance the nonlinear and dispersive effects across
inter-grid boundaries to maintain the solitary waveform. We consider a 45-m long, 25-m wide,
and 0.5-m deep channel with two levels of nested grids. The initial conditions correspond to a
0.05-m high solitary wave at x =7.5m. Radiation conditions at both ends of the channel minimize
reflection and a Manning’s roughness coefficient n=0 corresponds to an inviscid flow.

Figure 5 shows a sequence of the computed waveforms in their original resolution as the solitary
wave propagates through the finer inner grid. The numerical experiment uses 20 cm resolution for
the level-1 outer grid and 4 cm for the level-2 inner grid. The configuration of the level-2 grid
allows testing of solitary wave propagation at different directions with respect to the inter-grid
boundary. The solitary wave enters the level-2 grid around t=2.5s and leaves at 15.0 s. Although
the inter-grid boundary is oblique to the wave direction, the solitary wave passes through the
level-2 grid smoothly with invisible surface disturbance and leaves no residual oscillations near
the inter-grid boundary, thereby verifying the capability of the grid-nesting scheme for dispersive
wave propagation.

4.2. N-wave transformation and run-up

Matsuyama and Tanaka [25] conducted a laboratory study at the Central Research Institute for
Electric Power Industry (CRIEPI) to investigate the nearshore wave dynamics of the 1993 Hokkaido
Nansei-Oki Tsunami. Eyewitness reported initial withdraw of the water followed by a large tsunami
wave at the coast causing 31.7m of run-up near Monai Valley, Japan. Such observations fit the
description of the leading depression N -wave, which is often used in laboratory studies of tsunami
impact close to the source. The CRIEPI wave flume is 205m long, 3.4m wide, and 6m high
with a hydraulic, piston-type wavemaker capable of generating N -waves. The 1:400-scale coastal
relief model around Monai Valley was constructed of painted plywood and installed approximately
140m from the wavemaker. The initial N -wave, which was relatively long with a very gentle
profile, dispersed into a series of short-period waves over the coastal relief model in the experiment.
The measured water-level data and run-up from the experiment allow validation of the present
grid-nesting scheme in describing generation of dispersive waves across inter-grid boundaries.

Figure 6(a) shows the setup of the numerical experiment over the 5.475-m long and 3.4-m wide
relief model. The level-1 grid covers the entire relief model at 2.5 cm resolution (10m full scale)
and the level-2 grid at 1.25 cm resolution (5m full scale) provides a more detailed description of
the wave processes in a nearshore area from Monai Valley to the 0.035-m (14m full-scale) depth
contour. A Manning’s coefficient n=0.012 describes the surface roughness of the painted plywood
relief model [36]. Figure 6(b) shows the input N -wave profile at the left boundary with 0.135m
(54m full scale) water depth. The incident waves shoal over a plane slope before refracting and
diffracting around a small island on a shallow bank. Figure 7(a) shows very good agreement of the
computed surface elevations with the laboratory measurements at three gauges behind the island.
The model reproduces the small-amplitude dispersive waves generated by reflection from the coast.
The minor phase lag in the dispersive waves is likely due to errors in the small-scale laboratory
experiment. We recomputed the results with a uniform grid over the entire domain at the same
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Figure 5. Propagation of solitary wave across two levels of nested grids in a channel of constant depth.
Dark blue indicates the level-1 grid and light blue denotes the level-2 grid.

1.25 cm resolution as the level-2 nested grid and obtained almost identical results as shown in
Figure 7(b).

Table I lists the run-up measurements along transects at y=2.2062 and 2.32m as well as
the maximum value inside Monai Valley from a series of tests in the laboratory experiment of
Matsuyama and Tanaka [25]. Figure 8 shows the computed run-up and inundation from the nested
and uniform grids along with the range and mean value of the recorded run-up. The computed
results show good agreement with the measured data despite the uncertainty in the laboratory
experiment. Both the nested and the uniform grid solutions are almost identical indicating the
proposed grid-nesting scheme appropriately transfers information across the inter-grid boundary
and provide results of comparable accuracy at a lower computational cost. The minor discrepancies
near the inter-grid boundaries are due to transition of the bathymetry from the outer to the inner grid.
Comparisons of the surface elevation, run-up, and inundation from the Moani Valley experiment
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Figure 6. (a) Level-1 and Level-2 computational domains for the Monai Valley Experiment. ◦, gauge
locations; —— (black), topography contours at 0.0125-m intervals; - - - - (gray), bathymetry contours at

0.0125-m intervals. (b) Input N -wave for the Monai valley experiment.

Figure 7. Time series of surface elevation at gauges in Monai Valley experiment: (a) comparison
of measurements with nested-grid solution and (b) comparison of nested and uniform grid
solutions. —— (black), laboratory data of Matsuyama and Tanaka [25]; —— (red), nested-grid

solution; - - - (blue), uniform-grid solution.
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Table I. Recorded run-up for the six trials from Matsuyama and Tanaka [25].

Maximum y=2.2062m y=2.32m
Trial no. Rmax (cm) (Full scale in m) R (cm) (Full scale in m) R (cm) (Full scale in m)

209_105 8.75 (35.0) 5.25 (21.0) 5.25 (21.0)
209_106 9.00 (36.0) 5.75 (23.0) 5.50 (22.0)
209_107 8.00 (32.0) 5.50 (22.0) 5.50 (22.0)
210_101 9.00 (36.0) 6.50 (26.0) 5.75 (23.0)
210_102 10.00 (40.0) 6.75 (27.0) 5.75 (23.0)
210_103 9.00 (36.0) 6.50 (26.0) 5.75 (23.0)

Mean 8.97 (35.8) 6.04 (24.2) 5.58 (22.3)

Figure 8. Run-up and inundation in Monai Valley experiment: (a) run-up and (b) inundation. ◦,
laboratory data of Matsuyama and Tanaka [25]; —— (red), nested-grid solution; - - - (blue),
uniform-grid solution; —— (black), topography contours at 0.0125m intervals; - - - (gray),

bathymetry contours at 0.0125m intervals.

verify the proposed grid-nesting scheme in handling dispersive wave and run-up processes over
complex nearshore bathymetry and topography.

5. MODEL VALIDATION AND DISCUSSION

We have incorporated the spherical coordinate system and two-way grid-nesting scheme into the
model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVE) of Yamazaki et al. [17]. This
allows modeling of tsunami evolution processes from generation, propagation to run-up with
due consideration to dynamic seafloor deformation, wave dispersion, wave breaking, and bore
propagation at appropriate resolution. The 2009 Samoa Tsunami affected regions with steep and
irregular offshore bathymetry as well as extended shallow fringing reefs. The well-recorded event
provides a critical test case to validate the present grid-nesting scheme and bathymetry smoothing
strategy for real-field tsunami modeling.
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5.1. Test case and model setup

The Samoa earthquake occurred near the Tonga trench on 29 September 2009 at 17:48:10 UTC. The
US Geological Survey (USGS) determined the epicenter at 15.509◦S172.034◦W and estimated the
moment magnitude Mw of 8.1. Figure 9 shows the rupture configuration and the locations of
the water-level stations in the region. The main energy of the resulting tsunami propagated toward
Tonga and American Samoa. The tide gauge in Pago Pago Harbor, Tutuila (American Samoa), and
the DART buoys 51425, 51426, and 54401 surrounding the rupture area recorded clear signals of
the tsunami. The destructive waves arrived at mid tide and produced a maximum run-up of 17.6m
with detrimental impact on Tutuila. The rugged, volcanic island sits on a shallow shelf of less than
100m depth covered by mesophotic corals [37]. The insular slope is steep with gradients up to 1:2
on the west side and drops off abruptly to over 3000m depth in the surrounding ocean. Several
field survey teams recorded and documented the tsunami run-up and inundation around Tutuila
and provided useful data for model validation [38–40].

We reconstruct the 2009 Samoa Tsunami from its generation at the earthquake source to run-up at
Pago Pago Harbor with four levels of nested grids. Figure 9(a) shows the coverage of the level-1 grid,
which extends across the south-central Pacific at 1-arcmin (≈1800m) resolution. An open boundary
condition allows radiation of tsunami waves away from the domain. Figure 10 shows the original
and the smoothed bathymetry at the next three levels. The level-2 grid covers American Samoa
and the surrounding seabed inside the 4000-m depth contour at 7.5 arcsec (≈225m) resolution to
capture wave transformation around the island group. The level-3 grid resolves the insular shelf and
slope of Tutuila down to the 1500-m depth contour at 1.5 arcsec (∼45m) and provides a transition
to the level-4 grid, which covers Pago Pago Harbor at 0.3 arcsec (∼9m) resolution for computation
of inundation as well as tide gauge signals. This nested-grid system describes wave dynamics at
resolution compatible with the physical process and spatial scale for optimization of computational
resources. A Manning’s coefficient n=0.035 represents the surface roughness of the coral reefs in
the near-shore seabed according to Bretschneider et al. [41]. The momentum-conserved advection

Figure 9. Bathymetry and topography in the model region for the 2009 Samoa Tsunami: (a) level-1
computational domain and (b) close-up view of rupture configuration and Samoa Islands. ........., rupture

area; ◦ (red), epicenter; ◦ (white), water-level stations.
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Figure 10. Coverage of level-2, level-3, and level-4 computational domains: (a) original bathymetry and
topography and (b) smoothed data with depth-dependent Gaussian function. ◦, Pago Pago tide station.

scheme is used at the level-4 grid, where flow discontinuities associated with wave breaking and
bore formation would otherwise cause volume loss and numerical dissipation.

The digital elevation model is derived from a blended dataset of multiple sources. The 0.5 arcmin
(≈900m) General Bathymetric Chart of the Oceans (GEBCO) from the British Oceanographic
Data Centre (BODC) provides the bathymetry for Pacific Ocean. The Coastal Relief Model from
National Geophysical Data Center (NGDC) covers the American Samoa region and Tutuila at 3
and 0.3333 arcsec (∼90 and 10m) resolution, respectively. Embedded in the NGDC dataset are
multibeam and satellite measurements around Tutuila and high-resolution LiDAR (Light Detection
and Ranging) survey data at Pago Pago Harbor. We have converted the datasets to reference the
WGS 84 datum and the mean sea level (MSL). The Generic Mapping Tools (GMT) interpolates the
data to produce the nested computational grids. The original data in Figure 10(a) shows fine details
of the seafloor. Smoothing of the bathymetry is sometimes necessary to ensure a converging solution
from the non-hydrostatic model. Figure 10(b) shows the processed data with the depth-dependent
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Gaussian function. The proposed scheme removes fine features in deep water that have little effect
on tsunami propagation, but retains the general bathymetry and the near-shore details important
for propagation and inundation computation, respectively.

5.2. Tsunami generation

The use of the vertical velocity to describe dispersive waves also facilitates modeling of tsunami
generation through dynamic deformation of the seafloor. USGS analyzed the rupture processes of
the 2009 Samoa Earthquake using the finite fault inverse algorithm of Ji et al. [24] and estimated
the fault parameters, such as depth, orientation, and slip over 420 subfaults of 6 km by 6 km each.
The analysis provides the rupture initiation time and rise time for 249 subfaults with seismic
moment of over 1025 dyne-cm each.

The planar fault model of Okada [42] describes the earth surface deformation in terms of the
depth, orientation, and slip of a rectangular fault as shown in Figure 11. The deformation is a
linear function of the slip and dimensions of the fault. Superposition of the planar fault solutions
from the subfaults gives the vertical displacement of the seafloor as

�(�,�, t)=
n∑

i=1
�i (�,�) fi (t) (44)

in which

fi (t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if t<ti

t− ti
	i

if ti�t�(ti +	i )

1 if t>(ti +	i )

(45)

where n=249 is the number of subfaults for the 2009 Samoa Earthquake, �i is the vertical earth
surface deformation associated with rupture of subfault i from Okada [42], and ti and 	i are the
corresponding rupture initiation time and rise time from the USGS finite fault solution. The source
time function (45) defines a linear motion of the slip at each subfault to approximate the rupture
process in the absence of more detailed information [43].

The USGS finite fault solution shows an average rise time of 3.4 s for the individual subfaults and
a rupture duration of 94 s over the entire event. Figure 12 shows the rupture, seafloor deformation,
and free surface elevation to illustrate the tsunami generation process. The rupture starts at the
epicenter located on the north side of the fault and propagates toward south. Despite the granularity
of the finite fault model, the seafloor deformation is rather continuous due to the depth of the fault
below the earth surface. The rupture generates a distinct pattern of uplift and subsidence on the

Figure 11. Schematic of planar fault model.
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Figure 12. Time sequence of rupture, seafloor deformation, and surface elevation. ——, uplift contours
at 0.2m intervals; - - - -, subsidence contours at 1.0m intervals; ......... (white), rupture area.

seafloor. The vertical displacement transfers both the kinetic and potential energy to the water.
The generation of tsunami waves occurs simultaneously with the propagation of the energy away
from the source. These dynamic processes result in different seafloor deformation and surface
wave patterns in contrast to the static deformation approach commonly used in tsunami modeling.
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The earthquake releases most of the energy in 30 s and the subsequent rupture has minimal effect
on the seafloor deformation. By the end of the rupture at t=94s, the tsunami has propagated over
a considerable distance with a leading depression toward the Samoa Islands.

5.3. Surface elevation and run-up

Tsunami energy propagation is directional with the majority perpendicular to the fault line.
Figure 13 shows the tsunami wave amplitude over South Central Pacific with a maximum value
of 1.8m over the deep ocean. The main energy propagates toward Tonga and American Samoa,
where the tide gauge in Pago Pago Harbor recorded a strong signal of the tsunami. The three
DART buoys, which are located roughly along the strike direction off the main energy beams, also
recorded clear signals.

Pago Pago Harbor is an L-shape embayment with fringing reefs along its shores. The reefs
converge at the west end of the harbor forming an extended shallow flat favorable to bore and
hydraulic jump formation [44]. The water over the 1000-m long reef flat is approximately 10m
deep and the depth increases to 30m over a distance of 500m from the reef edge. Figure 14
shows a series of the computed surface elevation in the inner harbor that corroborates eyewitness
accounts during the first wave [38]. The water begins to withdraw approximately 20min after the
earthquake exposing the shallow reef flats along the shores. The first positive wave, which arrives
shortly afterward, reaches a surface elevation of 2m in the inner harbor and floods the low-lying
coastal areas on the north and south sides. The wave develops a sharp surface gradient over the
reef flat around t=26 min and transforms into a surge as it hits dry land reaching a maximum
elevation of 8.14m and producing extensive damage in the area. A hydraulic jump develops at
the reef edge around t=31.0 min as the floodwater returns to the harbor. The wave retreats faster
than the receding floodwater resulting in accumulation of water on land and a waterfall over the
reef edge until the next wave arrives.

Figure 13. Computed maximum surface elevation of the 2009 Samoa Tsunami. ◦ (white), water level
stations; ◦ (red), epicenter of the 2009 Samoa Earthquake; ......... (white), rupture area.
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Figure 14. Wave propagation and inundation at inner Pago Pago Harbor. —— (black), coastline; ——
(gray), contours at 2.5m intervals.

Figure 15 shows a comparison of the recorded and computed waveforms and spectra at the Pago
Pago tide gauge and the three DART buoys. The computed results show good agreement of the
arrival time, amplitude, and frequency content with the measurements. The model reproduces the
initial negative wave at the tide gauge and captures the distinct 11- and 18-min oscillations at Pago
Pago Harbor. Some discrepancies of the initial waveforms are evident at the DART buoys. The
model overestimates the amplitude of the leading depression at DART 51425 and cannot describe
the polarity at DART 51426 and 54401. However, the amplitude recorded at these buoys is less than
4% of the 1.8m maximum amplitude in the open ocean to the east of the source. The discrepancy
is likely due to a secondary rupture in the forearc recently reported by Lay et al. [45]. The primary
source mechanism from the USGS finite fault solution is deemed accurate as it reproduces the
observations and strong tsunami signals at Pago Pago Harbor. In fact, the model results at DART
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Figure 15. Time series and spectra of surface elevations at water level stations. —— (black), recorded
data; —— (red), computed data.

51426 and 54401 reproduce the high-amplitude reflected waves from Tutuila arriving at 1.6 and
3.2 h after the earthquake.

Pago Pago Harbor is approximately 50m deep, while the 100-m deep outside embayment is
sheltered by barrier reefs along the edge of the insular shelf as shown in Figure 16(a). The
configuration of the harbor and embayment is prone to trapping of long waves and the two
distinct peaks in the amplitude spectrum are indicative of resonance. Following the method of
Munger and Cheung [46] based on Fast Fourier Transform, we extract the oscillation modes of the
modeled tsunami waves to understand the resonance characteristics. The spectral analysis depicts
three resonance modes at 9.7, 11, and 18min period in Pago Pago Harbor that are plotted in
Figures 16(b)–(d). The first resonance at 18min extends from the embayment into Pago Pago
Harbor. The resonance mode shows a node over the insular shelf and an antinode at the tip of the
harbor. The second resonance mode at 11min covers the same region with nodes at the harbor
entrance and the edge of the insular shelf. The third mode at 9.7min, with a relatively lower energy
level in this event, has an additional node in the outside embayment. The combined effect of
the first two resonance modes provides an explanation for the significant inundation and property
damage despite the well-sheltered location of the inner harbor.

The results presented so far have been based on the smoothed bathymetry in Figure 10(b).
We compute the run-up and inundation at the level-4 grid with both the smoothed and orig-
inal bathymetry to assess the effectiveness of the depth-dependent smoothing scheme. Figure 17
compares the computed run-up and inundation around Pago Pago Harbor with the measurements
from Koshimura et al. [38] and Okal et al. [40]. The two sets of computed run-up results are
almost identical thereby verifying the proposed smoothing scheme that serves to improve model
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Figure 16. Detailed bathymetry and resonance modes around Pago Pago Harbor: (a) bathymetry; (b) first
mode at 18min; (c) second mode at 11min; and (d) third mode at 9.6min. —— (grey), depth contours

at 25m intervals; - - - - (gray), depth contours at 500m intervals.

convergence without appreciable alteration of the model results. The smoothing of the bathymetry
results in a 10% reduction on the number of iterations in the non-hydrostatic solver that is relatively
minor because of the lack of small-scale, steep bottom features in the level-4 grid. In some situa-
tions, smoothing is necessary to obtain converging non-hydrostatic solutions. The model reproduces
the overall pattern and height of the run-up along the coast. The minor discrepancies between the
computed results and the measurements are primarily due to errors in the topographic data and
the difficulties in modeling inundation in the built environment around Pago Pago Harbor. The
large run-up at the tip and low values in the outer harbor show strong correlation with the three
resonance modes. Such oscillations, which extend over the entire insular shelf and slope, provide
an explanation for the local amplification and the disparate property damage along the coastlines of
Tutuila [47].
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Figure 17. Run-up and inundation at inner Pago Pago Harbor. —— (white), recorded inundation; ◦ (white),
recorded run-up; ◦ (blue), recorded flow depth plus land elevation; —— (red), solution with smoothed
bathymetry; - - - - (blue), solution with non-smoothed bathymetry; —— (black), coastline; —— (gray),

depth contours at 10m intervals.

6. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated the versatility and robustness of a depth-integrated, non-hydrostatic
model for tsunami research and impact assessment. The inclusion of the non-hydrostatic pressure
and vertical velocity in the governing equations allows modeling of dynamic seafloor deformation
in tsunami generation and wave dispersion effects during the evolution processes. The formulation
in the spherical coordinate system accounts for the earth’s curvature in basin-wide tsunami prop-
agation and yet is flexible enough to model inundation at a regional scale. Implementation of
the momentum-conserved advection scheme with an upwind flux approximation allows modeling
of flow discontinuities associated with bores and hydraulic jumps during the run-up and draw-
down process.

The lower order spatial derivatives in the governing equations facilitate implementation of a
grid-nesting scheme for the shock-capturing, dispersive wave model. A two-way nesting scheme
exchanges the horizontal velocity, surface elevation, and non-hydrostatic pressure between an inner
and an outer grid at every outer grid time step. The use of both the velocity and surface elevation
in the nesting scheme is necessary for the momentum-conserved advection scheme, the upwind
flux approximation, and computation of Coriolis effects. A Dirichlet boundary condition of the
non-hydrostatic pressure ensures that wave dispersion is continuous across inter-grid boundaries.
This grid nesting scheme enables the use of non-rectangular computational domains that can adapt
to depth contours and bathymetric features for optimization of computational time.

Numerical experiments of solitary wave propagation in a channel and N -wave run-up in Monai
Valley verify the proposed grid-nesting scheme. The present model is applied to reconstruct the
2009 Samoa Tsunami from the USGS finite fault solution. The model reproduces resonance and
flow discontinuities and provides an explanation of the observed tsunami behaviors and impacts in
Pago Pago Harbor. The computed surface elevations at the DART buoys and the Pago Pago Harbor
tide gauge as well as the run-up around the harbor show very good agreement with recorded data.
The depth-dependent smoothing scheme improves computational efficiency without noticeable
modification of the computed water level and run-up. The case study demonstrates the capability
of the present model in describing generation, propagation, and run-up of real-field tsunamis.

This paper has described an alternate direction in tsunami modeling with ample opportuni-
ties for research and development. These include enhancement of the dispersion characteristics
for modeling of coastal processes, parallelization for improvement of computational efficiency,
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extension to include horizontal seafloor deformation, and coupling with a three-dimensional
hydrodynamics model for landslide-generated tsunamis. On-going and future applications include
tsunami inundation mapping for Hawaii, American Samoa, the US Gulf coasts, and Chile as well
as paleotsunami modeling and impact assessment for Western Samoa. The present theoretical and
numerical formulations, which build on the nonlinear shallow-water equations, can be implemented
in most commonly used long-wave models.
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