Statement of Recent and Current Research

My current research interests are focused on the development of methods and algorithms for solv-
ing control and identification problems for distributed parameter systems. These problems have
important applications in science and engineering. My approach is based on deep and heretofore
incompletely exploited connections between nonharmonic Fourier series, control theory for partial
differential equations, inverse problems of mathematical physics, and signal processing. This ap-
proach is now recognized by specialists, and I collaborate with many mathematicians, scientists
and engineers all over the world in developing my methods, in particular, the efficient Boundary
Control method in inverse theory.

Using this approach we have recently solved several outstanding problems in the aforementioned
areas of applied mathematics. Our results and their interdisciplinary importance can be briefly
summarized as follows:

Control and inverse problems for partial differential equations on graphs. These prob-
lems belong to a rapidly developing interdisciplinary area of applied mathematics — analysis on
(quantum) graphs. Differential equations on graphs are used to describe many physical processes
such as mechanical vibrations of multi-linked flexible structures (usually composed of flexible beams
or strings), propagation of electro-magnetic waves in networks of optical fibers, heat flow in multi-
link networks, and also electron flow in quantum mechanical circuits. Recently mesoscopic quasi-
one-dimensional structures (graphs), like quantum, atomic, and molecular wires, have become the
subject of extensive experimental and theoretical studies. In physical terms, a quantum wire is
a graph-like structure on the surface of a semiconductor, which confines an electron to potential
grooves of a width of a few nanometers. A solid theory of inverse problems for the Schrodinger
equation on graphs would be an important step towards designing quantum devices. Unfortunately,
to date there are only a few results concerning inverse problems on graphs.

We developed a new, effective, and robust approach for solving inverse problems for partial
differential equations on graphs using boundary and internal observations. Our approach is based on
the Boundary Control method and uses the results on controllability of multi-link flexible structures.
Since the number of edges of graphs arising in applications is typically very big, we suggested a
recursive procedure for solving the inverse problem and developed an effective numerical algorithm.
This procedure allows efficiently recalculating the inverse data from the original large graph to the
smaller subgraphs, ‘pruning’ leaves of the graph step-by-step.

Our results are a breakthrough in inverse theory of differential equations on graphs. We also
obtained the first numerical results solving inverse problems on graphs. Our methods allow us to
recover not only the coefficients of the equations, but also the unknown topology and geometry
(the angles between the adjacent edges). These results are based on new discoveries in inverse
spectral theory. Our results can find numerous applications in engineering, nanotechnology, and
communication theory including social networks.

Another important area of application of our results is neuroscience, in particular, dendritic
trees of the central nervous system. Inverse problems here include identification of physical param-
eters and tree morphology from boundary observations. I continue collaboration in this field with
biomathematician Jonathan Bell (UMBC).

Control and identification problems for systems with internal damping and systems
with memory. Recently, we have obtained breakthrough results in control and identification
problems for damped, hybrid and complex systems including controllability results for viscoelastic



systems and heat equations with memory. This will have important applications in many areas,
such as material science, nondestructive testing, geophysics, acoustic imaging, and remote sensing.

Our main mathematical achievement in this area is the extension of the classical Fourier method
to partial differential equations with time dependent coefficients including wave and heat equations
with memory. For that we proved the Riesz basis property of solutions to certain differential
equations with time delays. These results are of significant interest in functional analysis in their
own right.

Control theory methods in signal processing. We developed a new prospective direction in
applied mathematics, which may be called “Applications of control theory to signal processing”.
Specifically, we demonstrated efficiency of this approach to sampling and interpolation problems
and spectral estimation. We describe briefly our approach and results on these topics.

Construction of sampling and interpolating sets for signals with multi-band spectra. This prob-
lem is important for signal processing and has numerous applications in physics, engineering, and
defense. Its solution yields both stable and non-redundant sampling of multi-band signals, and it
gives a generalization of the Whittaker—-Kotel’nikov—Shannon sampling formula, which has funda-
mental significance for accurate and robust transmission of information.

We have proposed a new approach to the problem based on connections between controllability
of dynamical systems described by linear partial differential equations and the Riesz basis property
of corresponding exponential families. We have related the problem of constructing the sampling
set for spectrally constrained signals to the solution of certain kinds Wiener-Hopf equations, and
we have described new techniques for solving these equations.

We have also solved a sampling and interpolation problem for nonseparated sampling sets and
for vector valued signals.

Developing of an effective method in the spectral estimation problem, i.e. recovery of unknown
N, ay, and A, in a signal f(t) = 27]:[:1 ane’?t by given samples f(t;),j = 1,...,2N. There is an
enormous literature devoted to this important problem in signal processing. We propose a new
method based on our approach to dynamical inverse problems and their connections with control-
theoretic ideas. This approach yields simple, fully linear recovery algorithms for the unknown
parameters. The new method allows us to study various generalization of the spectral estimation
problem, including cases of multiple spectra, irregular sampling, signals in the presence of noise,
vector valued signals, and the case N = oo.

Inverse problems in glaciology. The basal boundaries of glaciers and ice sheets are generally
not observationally accessible. This poses a major problem for glacier modeling studies, because
the basal boundary condition is an essential part of a well-posed problem. The surface, however,
is accessible to ground based, airborne, and satellite measurements. This sets up a classic inverse
problem, with too many boundary conditions at the top and not enough at the bottom for a system
described by nonlinear partial differential equations.

We have applied new inverse methods to derive basal velocity fields over large areas. This is a
major improvement in the understanding of the subglacial environment, and it represents a major
step towards predictive glacier models. Such models are important in the study of glacier-climate
interaction, dating of ice cores, and assessment of natural hazards.

We proposed several approaches to this very complicated inverse problem, including special
iterative procedures. We obtained new stability estimates for this inverse problem and presented
extensive numerical calculations which demonstrated good agreement with experimental glaciolog-
ical data.



