Numerical Linear Algebra Comprehensive Exam

PART I: DO ALL OF THE PROBLEMS A-F

- Suppose $A \in \mathbb{C}^{m \times m}$ is invertible. Consider the factorization PA = LU for L unit lower-triangular, U upper-triangular, and P a permutation matrix.
- Given $b \in \mathbb{C}^m$, how is this factorization used to solve Ax = b for $x \in \mathbb{C}^m$? (a)
- (b) Give leading order estimates, as $m \to \infty$, of the number of floating point operations to implement the major stages of the method in part (a), including the cost of the factorization PA = LU. Assume the factorization is computed by Gaussian elimination with partial pivoting and that the other major steps use standard algorithms. (Name these standard algorithms.)
- Is Gaussian elimination with partial pivoting always the best method for solving a square system like Ax = b? Describe at least one alternative algorithm with superior stability properties.
- Suppose $A \in \mathbb{C}^{m \times n}$. Define a singular value decomposition (SVD) of A. For В. (a) m > n, describe how the reduced SVD differs from the SVD.
- For m > n and A of full rank, use the reduced SVD to construct an orthogonal (b) projector P onto the range of A. Show that P is an orthogonal projector.
- Compute $||A||_2$ and $||A||_F$ for the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- (b) Compute the condition number $cond(A) = \kappa(A)$ using the 2-norm.
- Let $\|\cdot\|$ be any norm on \mathbb{C}^m and also let it denote the corresponding induced norm on square matrices $A \in \mathbb{C}^{m \times m}$. Show that $\rho(A) \leq ||A||$ if $\rho(A)$ is the spectral radius of A. (The spectral radius of A is the maximum of $|\lambda|$ over the eigenvalues λ of A.)
- $\mathbf{E}.$ Consider a computer satisfying the standard axioms for floating point arithmetic, ¹ so that the machine precision ϵ_{mach} is precisely defined. Let X, Y be real, normed vector spaces and let $f:X\to Y$ be a problem. Precisely define: The algorithm $\tilde{f}:X\to Y$ computing the problem f is backward stable. (An informal definition might be included to explain the idea, but it does not suffice.)
- Give an example of an invertible 2×2 matrix A which has $\det(A) > 10^{20}$ but for which the system Ax = b is well-conditioned.

¹Namely that for each such computer there exists $\epsilon_{\rm mach} > 0$ so that the following two facts hold: (1) For all $x \in \mathbb{R}$ there is ϵ so that $|\epsilon| \leq \epsilon_{\text{mach}}$ and $fl(x) = x(1+\epsilon)$. (2) For all $x, y \in \mathbb{R}$ and each operation $* = +, -, \times, \div$, with computer implementation \circledast , there is ϵ so that $|\epsilon| \le \epsilon_{\text{mach}}$ and $x \circledast y = (x * y)(1 + \epsilon)$.

PART II: DO TWO OF THE FOLLOWING THREE PROBLEMS

1. (a) Let

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}.$$

Compute the eigenvalues and eigenvectors of A.

(b) Let $x \in \mathbb{C}^2$ be a random vector. For the same matrix A, estimate

$$\frac{\|A^{2013}x\|}{\|A^{2012}x\|}.$$

Explain. Include in your explanation a description of those rare vectors for which your estimate is not accurate.

2. Suppose we define a square matrix $A \in \mathbb{C}^{m \times m}$ to be *normal* if there is an orthonormal basis of \mathbb{C}^m consisting of eigenvectors of A.

(a) Show that if A is normal then $A^*A = AA^*$.

(b) Show that if A is normal then any Schur factorization of A is, in fact, a unitary diagonalization.

3. (a) Show that if P is an orthogonal projector then I-2P is unitary.

(b) For $A \in \mathbb{C}^{m \times n}$ of full rank with $m \geq n$, A^* the hermitian transpose of $A, b \in \mathbb{C}^m$, and P the orthogonal projector onto the range of A, show that the equations

$$A^*Ax = A^*b$$
 and $Ax = Pb$

have the same unique solution $x \in \mathbb{C}^n$.