## Sample Algebra Comprehensive Exam Problems

Spring 2019
This sample exam is a composite of questions asked on recent MATH 631 exams. As a result the length of this exam is much longer (by a factor of at least 2) than a comprehensive exam, but the breadth of topics covered and the difficulty level are representative of possible test questions.
Part I. Short answer or easy computation.

1. Consider the cylic group $C_{4900}=\langle x\rangle$ of order $4900=2^{2} \cdot 5^{2} \cdot 7^{2}$.
(a) Give the number of generators of $C_{4900}$.
(b) List explicitly the elements $x^{a}$, with $0 \leq a \leq 4899$, of order 10 .

Answer: $\left|x^{a}\right|=10$ if $a=$
(If it helps, you can simply give the prime factorizations of $a$. I am not interested in your ability to multiply integers.)
2. Consider the cyclic groups $\mathbb{Z} / 30 \mathbb{Z}$ and $C_{18}=\langle x\rangle$ of orders 30 and 18 respectively, and suppose that

$$
\begin{aligned}
\varphi_{a}: \mathbb{Z} / 30 \mathbb{Z} & \rightarrow C_{18} \\
1 & \mapsto x^{a}
\end{aligned}
$$

extends to a well-defined group homomorphism from $\mathbb{Z} / 30 \mathbb{Z}$ to $C_{18}$.
(a) List the values of $a$ with $0 \leq a \leq 17$ for which this is true. (I.e. The map defines a well-defined group homomorphism.)
(b) Give a brief explanation why such a well-defined group homomorphism can not be surjective.
3. Consider the symmetric group $G=S_{7}$ and let $\sigma=\left(\begin{array}{ll}1 & 3 \\ 3 & 547\end{array}\right)$ be a 7 -cycle.
(a) Express $\sigma$ as the product of (not necessarily disjoint) transpositions.
(b) Compute the number of conjugates of $\sigma$ in $S_{7}$.
(c) Let $\tau$ be the 7 -cycle ( 3714562 ). Give an element $\alpha$ that conjugates $\sigma$ to $\tau$, i.e. give $\alpha$ such that $\alpha \sigma \alpha^{-1}=\tau$.
(d) Noting that $S_{7}$ acts on itself by conjugation, explicitly use the Orbit-Stabilizer theorem to find the size of the stabilizer of $\sigma$ under this action and the elements of the Stabilizer subgroup of $S_{7}$.
The stabilizer of $\sigma$ in this context is better known as $\qquad$ . (Using appropriate notation in place of words here is fine.)
(e) Noting that $\sigma \in A_{7}$, what is the size of the conjugacy class of $\sigma$ in $A_{7}$ ? Stated otherwise, how many conjugates in $A_{7}$ does $\sigma$ have? Briefly, state a result that justifies your answer.
Answer: The number of conjugates of $\sigma$ in $A_{7}$ is $\qquad$
because ....
4. (a) Suppose that $A$ is an Abelian group of order $200=2^{3} \cdot 5^{2}$. Give the isomorphism classes for $A$ in a table below. In the left hand column, give the elementary divisor decomposition and in the right hand column, give the invariant factor decomposition. Groups on the same row should be isomorphic. You do not need to show your work.
(b) Give the number of non-isomorphic Abelian groups of order $400=2^{4} \cdot 5^{2}$.
5. Prove that there are no simple groups of order 56 .
6. Give the definition of a nilpotent element in a ring $R$. Then prove that the set of nilpotent elements in $M_{2}(\mathbb{Q})$ is not an ideal.
7. Suppose $G$ is a non-cyclic group of order $205=5 \cdot 41$. Give, with proof, the number of elements of order 5 in $G$.
8. Find ALL solutions $x$ in the integers to the simultaneous congruences.

$$
\begin{array}{ll}
x \equiv 7 & \bmod 11 \\
x \equiv 2 & \bmod 5
\end{array}
$$

9. Draw the lattice diagram of prime ideals for the polynomial ring $\mathbb{Q}[x]$. Note: There are infinitely many prime ideals so you will need a way to indicate them all.

## Part II. Theory

1. Suppose $G$ is a group with $H, K$ subgroups of $G$. Prove that if $H \leq N_{G}(K)$, then $H K=\{h k \mid h \in H, k \in K\}$ is a subgroup of $G$.
2. Suppose that a finite group $G$ is of order $105,|G|=3 \cdot 5 \cdot 7$, and that $G$ has normal subgroups of order 3,5 and 7. Prove or disprove: $G$ is cyclic.
3. Let $P$ be a $p$-group, $|P|=p^{a}>1$ for $p$ a prime, and let $A$ be a nonempty finite set. Suppose that $P$ acts on $A$ and define the set of fixed points of this action:

$$
A_{0}=\{a \in A \mid g \cdot a=a \text { for every } g \in P\}
$$

Prove that

$$
|A| \equiv\left|A_{0}\right|(\bmod p)
$$

4. Let $\varphi(n)$ denote the Euler $\varphi$-function. Prove that if $p$ is a prime and $n \in \mathbb{Z}^{+}$, then

$$
n \mid \varphi\left(p^{n}-1\right)
$$

(Hint: Compute the order of $\bar{p}$ in the appropriate group first.)
5. Prove that if $G$ is a group of order $p^{2}$ for $p$ a prime, then $G$ is Abelian.
6. Suppose $G$ is a finite group of order $|G|=14,553=3^{3} \cdot 7^{2} \cdot 11$ and that $N$ is a normal subgroup of $G$ of order $|N|=11$. Prove that $N \leq Z(G)$.
7. Suppose $G$ is a group, $H \leq G$, and $\operatorname{Aut}(H)$ the group of automorphisms of $H$.
(a) Using the First Isomorphism theorem, give a full proof of the following statement.

The quotient group $N_{G}(H) / C_{G}(H) \cong A \leq \operatorname{Aut}(H)$.
(b) Suppose now that $P$ is a Sylow $p$-subgroup of $S_{p}$ for a prime $p$. Prove that

$$
N_{S_{p}}(P) / C_{S_{p}}(P) \cong \operatorname{Aut}(P)
$$

8. Let $G$ be a finite group of order 22 . Prove that $G$ is cyclic or isomorphic to the dihedral group $D_{22}$.
9. In a PID every nonzero element is a prime if, and only if, it is irreducible.
10. Suppose $R$ is a commutative ring with 1 and for each $x \in R$, there is a positive integer $n>1$ so that $x^{n}=x$. Prove that every nonzero prime ideal is maximal.
11. Let $\mathbb{F}_{7}$ denote the finite field with 7 elements.
(a) Explicitly construct a finite field with $343=7^{3}$ elements. Explain your work.
(b) The field you constructed in part (a) is a simple extension of $\mathbb{F}_{7}$ so let $\alpha$ be an element in some extension of $\mathbb{F}_{7}$ such that $\left|\mathbb{F}_{7}(\alpha)\right|=343$. Find the inverse of the element $1+\alpha \in \mathbb{F}_{7}(\alpha)$.
12. Find, with brief justification, all ring homomorphisms from $\mathbb{Z} \rightarrow \mathbb{Z} / 12 Z$.
13. Consider the ring of Gaussian integers $\mathbb{Z}[i]$.
(a) Prove that if $\alpha=a+b i$ for $a, b \in \mathbb{Z}$ is a Gaussian integer with $N(\alpha)=p$ for $p$ a prime of $\mathbb{Z}$, then $\alpha$ is irreducible.
(b) List all the units of $\mathbb{Z}[i]$.
(c) Give an example of a prime number $p \in \mathbb{Z}$ such that $p$ is irreducible in $\mathbb{Z}[i]$. Justify your answer by stating an appropriate result.
14. Let $D$ be a square-free integer, and consider the quadratic number field $\mathbb{Q}(\sqrt{D})$ and its subring of integers $\mathcal{O}$. Let $N: \mathbb{Q}(\sqrt{D}) \rightarrow \mathbb{Z}$ denote the field norm map which is multiplicative. The restriction of $N$ to the ring of integers $\mathcal{O}$ will also denoted by $N$.
(a) Prove that an element $\alpha \in \mathcal{O}$ is a unit if, and only if, $N(\alpha)= \pm 1$.
(b) When $D=-3$, the ring of integers is $\mathcal{O}=\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{-3}}{2}\right)$. Find a unit in $\mathcal{O} \backslash \mathbb{Z}$.
(c) Let $D=-5$. Give, with proof, an example of an element $x=a+b \sqrt{-5}$ for $a, b \in Z$ such that $x$ is irreducible, but $x$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.
