Sample Algebra Comprehensive Exam Problems

Spring 2019

This sample exam is a composite of questions asked on recent MATH 631 exams. As a result the length of this exam is much longer (by a factor of at least 2) than a comprehensive exam, but the breadth of topics covered and the difficulty level are representative of possible test questions.

Part I. Short answer or easy computation.

- 1. Consider the cylic group $C_{4900} = \langle x \rangle$ of order $4900 = 2^2 \cdot 5^2 \cdot 7^2$.
 - (a) Give the number of generators of C_{4900} .
 - (b) List explicitly the elements x^a , with $0 \le a \le 4899$, of order 10.

Answer: $|x^a| = 10$ if a =_____

(If it helps, you can simply give the prime factorizations of a. I am not interested in your ability to multiply integers.)

2. Consider the cyclic groups $\mathbb{Z}/30\mathbb{Z}$ and $C_{18} = \langle x \rangle$ of orders 30 and 18 respectively, and suppose that

$$\varphi_a: \mathbb{Z}/30\mathbb{Z} \to C_{18}$$

$$1 \mapsto x^a$$

extends to a well-defined group homomorphism from $\mathbb{Z}/30\mathbb{Z}$ to C_{18} .

- (a) List the values of a with $0 \le a \le 17$ for which this is true. (I.e. The map defines a well-defined group homomorphism.)
- (b) Give a brief explanation why such a well-defined group homomorphism can not be surjective.
- 3. Consider the symmetric group $G = S_7$ and let $\sigma = (1\ 2\ 3\ 6\ 5\ 4\ 7)$ be a 7-cycle.
 - (a) Express σ as the product of (not necessarily disjoint) transpositions.
 - (b) Compute the number of conjugates of σ in S_7 .
 - (c) Let τ be the 7-cycle (3 7 1 4 5 6 2). Give an element α that conjugates σ to τ , i.e. give α such that $\alpha\sigma\alpha^{-1}=\tau$.
 - (d) Noting that S_7 acts on itself by conjugation, explicitly use the Orbit-Stabilizer theorem to find the size of the stabilizer of σ under this action and the elements of the Stabilizer subgroup of S_7 .

The stabilizer of σ in this context is better known as ______. (Using appropriate notation in place of words here is fine.)

(e) Noting that $\sigma \in A_7$, what is the size of the conjugacy class of σ in A_7 ? Stated otherwise, how many conjugates in A_7 does σ have? Briefly, state a result that justifies your answer.

Answer: The number of conjugates of σ in A_7 is ______

because

- 4. (a) Suppose that A is an Abelian group of order $200 = 2^3 \cdot 5^2$. Give the isomorphism classes for A in a table below. In the left hand column, give the elementary divisor decomposition and in the right hand column, give the invariant factor decomposition. **Groups on the same row should be isomorphic.** You do not need to show your work.
 - (b) Give the number of non-isomorphic Abelian groups of order $400=2^4\cdot 5^2$.
- 5. Prove that there are no simple groups of order 56.
- 6. Give the definition of a nilpotent element in a ring R. Then prove that the set of nilpotent elements in $M_2(\mathbb{Q})$ is **not** an ideal.

- 7. Suppose G is a non-cyclic group of order $205 = 5 \cdot 41$. Give, with proof, the number of elements of order 5 in G.
- 8. Find \mathbf{ALL} solutions x in the integers to the simultaneous congruences.

$$x \equiv 7 \mod 11$$
$$x \equiv 2 \mod 5$$

9. Draw the lattice diagram of prime ideals for the polynomial ring $\mathbb{Q}[x]$. Note: There are infinitely many prime ideals so you will need a way to indicate them all.

Part II. Theory

- 1. Suppose G is a group with H, K subgroups of G. Prove that if $H \leq N_G(K)$, then $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup of G.
- 2. Suppose that a finite group G is of order 105, $|G| = 3 \cdot 5 \cdot 7$, and that G has normal subgroups of order 3, 5 and 7. Prove or disprove: G is cyclic.
- 3. Let P be a p-group, $|P| = p^a > 1$ for p a prime, and let A be a nonempty finite set. Suppose that P acts on A and define the set of fixed points of this action:

$$A_0 = \{ a \in A \mid g \cdot a = a \text{ for every } g \in P \}.$$

Prove that

$$|A| \equiv |A_0| \pmod{p}$$
.

4. Let $\varphi(n)$ denote the Euler φ -function. Prove that if p is a prime and $n \in \mathbb{Z}^+$, then

$$n \mid \varphi(p^n-1).$$

(Hint: Compute the order of \bar{p} in the appropriate group first.)

- 5. Prove that if G is a group of order p^2 for p a prime, then G is Abelian.
- 6. Suppose G is a finite group of order $|G| = 14,553 = 3^3 \cdot 7^2 \cdot 11$ and that N is a normal subgroup of G of order |N| = 11. Prove that $N \leq Z(G)$.
- 7. Suppose G is a group, $H \leq G$, and Aut(H) the group of automorphisms of H.
 - (a) Using the First Isomorphism theorem, give a **full** proof of the following statement. The quotient group $N_G(H)/C_G(H) \cong A \leq \operatorname{Aut}(H)$.
 - (b) Suppose now that P is a Sylow p-subgroup of S_p for a prime p. Prove that

$$N_{S_n}(P)/C_{S_n}(P) \cong \operatorname{Aut}(P).$$

- 8. Let G be a finite group of order 22. Prove that G is cyclic or isomorphic to the dihedral group D_{22} .
- 9. In a PID every nonzero element is a prime if, and only if, it is irreducible.
- 10. Suppose R is a commutative ring with 1 and for each $x \in R$, there is a positive integer n > 1 so that $x^n = x$. Prove that every nonzero prime ideal is maximal.
- 11. Let \mathbb{F}_7 denote the finite field with 7 elements.
 - (a) Explicitly construct a finite field with $343 = 7^3$ elements. Explain your work.
 - (b) The field you constructed in part (a) is a simple extension of \mathbb{F}_7 so let α be an element in some extension of \mathbb{F}_7 such that $|\mathbb{F}_7(\alpha)| = 343$. Find the inverse of the element $1 + \alpha \in \mathbb{F}_7(\alpha)$.

- 12. Find, with brief justification, all ring homomorphisms from $\mathbb{Z} \to \mathbb{Z}/12Z$.
- 13. Consider the ring of Gaussian integers $\mathbb{Z}[i]$.
 - (a) Prove that if $\alpha = a + bi$ for $a, b \in \mathbb{Z}$ is a Gaussian integer with $N(\alpha) = p$ for p a prime of \mathbb{Z} , then α is irreducible.
 - (b) List all the units of $\mathbb{Z}[i]$.
 - (c) Give an example of a prime number $p \in \mathbb{Z}$ such that p is irreducible in $\mathbb{Z}[i]$. Justify your answer by stating an appropriate result.
- 14. Let D be a square-free integer, and consider the quadratic number field $\mathbb{Q}(\sqrt{D})$ and its subring of integers \mathcal{O} . Let $N: \mathbb{Q}(\sqrt{D}) \to \mathbb{Z}$ denote the field norm map which is multiplicative. The restriction of N to the ring of integers \mathcal{O} will also denoted by N.
 - (a) Prove that an element $\alpha \in \mathcal{O}$ is a unit if, and only if, $N(\alpha) = \pm 1$.
 - (b) When D = -3, the ring of integers is $\mathcal{O} = \mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{-3}}{2}\right)$. Find a unit in $\mathcal{O} \setminus \mathbb{Z}$.
 - (c) Let D=-5. Give, with proof, an example of an element $x=a+b\sqrt{-5}$ for $a,b\in Z$ such that x is irreducible, but x is not prime in $\mathbb{Z}[\sqrt{-5}]$.