Comprehensive MS Math (and PhD qualifying) Exam: Complex Analysis

Rules. Complete as many problems as you can. (It may be a good idea to use the last 10 minutes to write down what you intend to do on the problems on which you are otherwise stuck.)

1. Show that: a) $\operatorname{Re} z \bar{w}=\operatorname{Re} \bar{z} w$ and $\operatorname{Im} z \bar{w}=-\operatorname{Im} \bar{z} w$.
b) if $z+w$ and $z w$ are both real then either z and w are both real or else $z=\bar{w}$.
2. Find a convergent series $\sum_{k=0}^{\infty} z_{k}$, with $z_{k} \neq 0$, such that $\limsup \left|z_{k+1} / z_{k}\right|=\infty$.
3. Find the radius of convergence of the series $\sum_{k=0}^{\infty} a_{k} z^{k}$ with $a_{3 n}=1 / n, a_{3 n+1}=\sqrt{n}$, $a_{3 n+2}=1 /(\sqrt{n+2})$.
4. Show that functions $f(z)=|z|$ and $f(z)=\operatorname{Re} z$ are nowhere differentiable on \mathbb{C} though they are continuous on \mathbb{C}.
5. Show that there cannot exist a function analytic on an open set $G \subset \mathbb{C}$ with real part $x-2 y^{2}$.
6. Find all zeros of $1-\cos z$.
7. Map conformally the infinite strip $\{z:|\operatorname{Re}(z-1)|<\pi / 2\}$ onto the open disk.
8. Evaluate the following integrals:

$$
\int_{\gamma} \frac{d z}{z^{2}+1}
$$

where $\gamma(t)=2 e^{i t}, 0 \leq t \leq 2 \pi$; and

$$
\frac{1}{i} \int_{\gamma} \frac{z^{m} \cos \pi z}{\sin \pi z} d z
$$

where $\gamma(t)=(n+1 / 2) e^{i t}, 0 \leq t \leq 2 \pi, n$ and m are positive integers.
9. Find the Laurent expansion of $1 / z(z-1)$ in $\{z: 0<|z|<1\}$ and also the Laurent expansion of the same function in $\{z: 0<|z-1|<1\}$.
10. Show that

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x=-\frac{\pi}{4}
$$

