Complex Analysis
 Comprehensive Exam Spring 2022

Authors Rybkin/Avdonin
Name \qquad
Complete eight (8) of the following ten (10) problems. Paper and pencil only. To get full credit you must show every essential step of your arguments.

1. Show that

$$
\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}
$$

and use it to derive the identity

$$
1 / 2+\cos \theta+\cos 2 \theta+\ldots+\cos n \theta=\frac{\sin (n+1 / 2) \theta}{2 \sin (\theta / 2)}
$$

2. Show that for any $z_{1}, z_{2} \in \mathbb{C}$

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

3. (a) Give the definition of an analytic function. (b) State the Cauchy-Riemann conditions (equations). (c) Prove that if f is analytic in a domain E then its real and imaginary parts satisfy the Cauchy-Riemann conditions (equations) in E.
4. Define the function $z^{\alpha}(\alpha \in(0,1))$ to be analytic in $\mathbb{C} \backslash[0, \infty)$. Compute the jump of z^{α} across $(0, \infty)$ (i.e. the difference $\left.(x+i 0)^{\alpha}-(x-i 0)^{\alpha}, x>0\right)$.
5. Use a known Taylor series to find the Laurent series for $\frac{5 z}{(3 z-1)(2 z+1)}$ in the annulus $1 / 3<|z|<1 / 2$.
6. State and prove the Cauchy integral formula (assume the Cauchy theorem).
7. State the Rouche theorem and use it to show that all poles of $f(z)=\left(z^{4}+6 z+3\right)^{-2}$ lie inside the circle $|z|=2$.
8. Use contour integration to show that for any $0 \leq r<1$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{\left|r-e^{i \theta}\right|^{2}} d \theta=1
$$

9. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^{2}+2 x+4} d x
$$

10. Prove that for any $a>0$

$$
\lim _{\varepsilon \rightarrow 0} \int_{C_{\varepsilon}^{+}} \frac{e^{i a z}}{z} d z=i \pi
$$

where $C_{\varepsilon}^{+}=\{z: \operatorname{Im} z \geq 0,|z|=\varepsilon\}$ with the initial point ε and the terminal point $-\varepsilon$.

