PETE/GEOS 445/645

Petroleum Geology

3 credits

Tuesday, Thursday 3:40-5:10 Reichardt 233

Hydrocarbons fuel today's economy, but remain a relatively rare natural resource. The objective of this course is to review the geologic controls on the distribution and accumulation of hydrocarbons, how those hydrocarbons are found, and subsequently extracted. Topics to be covered in lectures will include:

- the subsurface environment
- the origin and nature of hydrocarbons
- how and where hydrocarbons accumulate
- methods of hydrocarbon exploration and exploitation
- unconventional hydrocarbon resources
- basic petroleum engineering concepts

Examples from classic hydrocarbon producing regions will be used to illustrate the principles and techniques discussed in class.

Students enrolled in the graduate class will work in teams and use the concepts and techniques discussed in class to analyze a geology and geophysical dataset from a sedimentary basin and determine its petroleum potential. Each team will summarize their results in a 5 page paper and a 25 minute presentation at the end of the semester.

Prerequisites:

For GEOS 445—GEOS F314 and GEOS F322 For PETE/GEOS 645--Graduate standing or permission of the instructor

Instructor: Cathy Hanks, NSB 346/Duckering 417, 474-5562 or 2668 chanks@gi.alaska.edu

Text: Selley, 1999, Elements of Petroleum Geology. Academic Press, 470 p.

Additional readings may be assigned to augment the lectures.

Office Hours: Duckering: Mon, Wed 10-11 am

Reichardt: Tuesday, Thursday 10:30-11:30 am

Class format:

The class will consist of lectures and homework assignments.

Grading Policy

The course grade will be a letter grade (plus, minus) and will be based on:

GEOS 445:

- 2 mid-term exams (25% each)
- final exam (25%)
- homeworks (25%)

PETE/GEOS 645:

- 2 mid-term exams (20% each)
- final exam (20%)
- homeworks (20%)
- final project paper and presentation (20%)

Students enrolled in PETE/GEOS 645 will meet with the instructor by October 1 to formulate their teams and receive the dataset. Each team will summarize the results of their project as a 5 page research paper and a 25 minute oral presentation at the end of the semester.

Grades will be determined using the following curve:

A = 90-100%B = 80-89%

C = 70 - 79%

D = 55-69%

F = <55%

Pluses/minuses will be given when the grade is within 2 percentage points of the cut off for either the next higher letter grade (plus) or next lower letter grade (minus).

The instructor reserves the right to curve the grades.

COURSE OUTLINE: (PRELIMINARY)

Week	Topic	Homeworks	Readings
Aug. 30	Intro—		
	What geologic factors are necessary for an		
	oil accumulation? What are the		
	engineering factors?		
Sept. 4	What is Petroleum?		Selley Ch. 2, 5.1
	 Organic vs. inorganic origin of 		

	petroleum		
	Chemical Properties		
	Physical Properties		
	The subsurface environment		
	Temperature within the earth	Hwk 1: Calculating	
6	Pressure	geothermal	Selley, Ch. 4
	Subsurface waters	gradients	
	Methods of Exploration		
	Drilling a well	Hwk 2: Examining	Selley, Ch. 3.1, 3.2,
11	Well logging	well cuttings and	3.5
	Subsurface geology and maps	well logs	
	Geophysical methods—Reflection	TI 12 I 4	
13	Seismicacquisition And	Hwk 3: Interpreting	Selley, Ch. 3.3
	interpretation, 3 D, 4D	seismic	
	The source: How oil forms		
	 Source rock characteristics 		
18	 Productivity and Preservation of 	Hwk 4: 2 D	Selley, Ch. 5
	Organic Matter.	geohistory modeling	
	 Hydrocarbon Maturation and 		
	Migration_		
	The Reservoir:		
	What makes a good reservoir rock?		
20	 Porosity. 		Selley, Ch. 6.1-6.7
20	Permeability.		Sency, Ch. 0.1 0.7
	Effects of Diagenesis on Reservoir		
	Quality.		
	Reservoir Continuity—the		
	importance of depositional	Hwk 5: Evaluating porosity from well logs	
25	environment:		
	 Variations due to sed structure 		
	Mesoscopic and map scale variations		
	Reservoir prediction in the subsurface: the		
27	importance of depositional environment		
	and sequence stratigraphy		
Oct. 2	Midterm I		
	Traps and Seals:		
	Nomenclature of a Trap.		
	• Trap types:	Harly 7. Exploration	
4	Structural Traps.	Hwk 7: Exploration	Selley, Ch. 7
	 Stratigraphic Traps. 	game	
	 Combination Traps. 		
	o Hydrodynamic Traps		
9	Grant Shimer—Sequence	Hwk 6: Sequence	
	stratigraphyCase study	stratigraphic	

		interpretation of seismic data	
11	Dr. Whalen—Carbonate reservoirs		
16	Salt-related structures	Hwk 8: Salt play on seismic	
18	Structural modifications of a reservoir: Fractured reservoirs		
23	Petroleum system analysis: Timing of Trap Development Relative to Migration.	Hwk 9: Petroleum Systems, Northern Alaska	
25	<u>Midterm 2</u>		
30	Petroleum systems & plate tectonic habitat • Passive continental margins		Selley, Ch. 8
Nov 1	Convergent marginsStrike-slip basins	Hwk 10: Plate tectonic setting of modern day basins	
6	Unconventional hydrocarbon resources shale resource plays		
8	 Viscous oil Gas hydrates Coal bed methane		Selley, Ch. 9
13	 Petroleum Exploration process Defining plays and prospects Reserve calculations Creaming curves What is the risk? 	Hwk 11: Simple reserve calculation	Ch. 10
15	Reservoir engineering: • Turning a geologic model into a reservoir model		
20	 Simulating production—why and how 		
22	THANKSGIVING: NO CLASS		
27	Field development		Selley, Ch. 6.8-6.9
29	Graduate Student presentations		
Dec. 4	<u>Midterm 3</u>		

Course Policies: Attendance at class is your responsibility. Students are responsible for making up any missed work. Students are encouraged to arrive to class on time. Make-up examinations will be held only under exceptional circumstances (e.g. illness, family crises, etc.). Medical documentation will be required to confirm illnesses. We follow the university guidelines for plagiarism/academic integrity as outlined in the current UAF catalog (p. 71-72).

Disability Services: The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. We will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accommodation to students with disabilities.