GEOS 606 Physical Volcanology

GEOS 606 CRN 77573 3 credits

September 6th – December 13th, 2013 Mondays, Wednesdays and Fridays MWF 11:40:12:45 Elvey 214 and Elvey 101

Dr. Jonathan Dehn

office: WRRB 108G, lab Elvey 101

phone: 474-6499 322-0676 email: jdehnavo@gmail.com

Office hours:

Tuesday and Wednesday 3:00-5:00 pm

Texbook:

Fundamentals of Physical Volcanology, Parfitt & Wilson

Class Homepage:

http://classes.images.alaska.edu/geos606

Course Description:

Volcanic Processes shall be discussed in depth, relating the physics behind the processes to the outcrops in the field. In addition to homework and examinations, the student will be required to solve a unique physical problem and present the results to the class during the "micro-meeting" at the end of the semester.

Structure:

41 Class Periods total

39 Lectures total

1 Guest Lecture

1 Day of "micro-meeting"

3 lectures cancelled for AGU

Weekly Homework

10 separate assignments

each 2% total grade

3 Exams, take-home, open book, closed neighbor

2 mid-terms

15% total grade

1 final

20 % total grade

1 Project

30% total grade

Grading:

Standard A-B-C, will not include +/- due to effect on

graduate standing (i.e. B = 2.7)

Syllabus GEOS 606 Physical Volcanology FALL 2013

September	06	Introduction, Important physical variables and constants the physical approach, boundary conditions		
Part 1: "Intr	oductio	n to physical processes"		
Week	1			
	09	Statics		
	0)	stress and strain, properties of matter, stress distributions		
		Phase differences in seasonal fracturing flow		
	11	Dynamics		
		how stress effects strain, fracture, propagation of movement kinematics and kinetics, classic models, internal vs. external process.	esse	
	11	Statics and Dynamics -homework 1: statics		
		Stress and strain, how these interact		
Week	2			
	16	Thermodynamics		
		the 3 laws, and 3 methods of heat transfer, the phase transition		
	18	Introduction to Rheology and Flow laminar vs. turbulent flows, thixotropic and power law fluids		
	20	Factor Dimensional Analysis -homework 2: thermone how to brew your own models)	
Week :	3			
Part 2: "Intra	usive P	rocesses"		
	23	Introduction		
		physical and/vs. chemical processes, magma generation, viscosity		
	25	Stress in and Around Magma Chambers sampling a magma chamber, physical interactions		
	27	Magma Chambers -homework 3: FDA		
		size and shape, over turn		
Week 4	4			
	30	Magma Chambers		

October

02	a chamber?				
04	Rate of Rise how fast can magma move	-homework 4: magma			
Week 5 07	Pipe Flow Simple models, Hagen-Poise	elle, Reynolds, Rayleigh, and worse			
09	Magmas & Dikes Phase differences in magma,	fracturing, flow			
11					
Week 6 14	Week 6 14 Bubble Formation Growth & Coalescence Jessica Larsen tentative guest lecture				
16	Conduit mechanics flow-type transitions, bubbles	s and density			
18	Eruption Mechanisms mixing, the role of volatiles, p	-homework 5: conduits pressure, temperature and cyclicity			
Part 3: "Extrusive P	Processes"				
Week 7					
21	Measuring Subsurface Movement intro to seismicity, long perio	nt d tremor, displacement, inflation			
23	Fissures, Flows and Fountaining changes during eruptions				
25	Flow Structures channels, levies, textures, and	l vesiculation -homework 6: bubbles			
Week 8 28	Lava Flows pahoe hoe to a'a transition, gr	rowth of flow fields			
30	Lava Domes endogenous and exogeno	ous growth, brittle ductile transition			

November

01	Flow Monitoring and Measurement field methods, flux	-homework 7: lavas		
		-project proposals due-		
Week 9				
04	Mafic Volcanoes examine the entire primitive volcanic sy	ystem		
06	The Role of Viscosity and Hazards flow dynamics of domes and Merapi-type pyroclastic flows			
08	The Role of Temperature higher silica contents, increase in explo	-EXAM 2: hawaiian-type sivity		
Week 10				
11	The Cooling of Lavas Stefan cooling problem, lakes, flows, do	omes		
13	The Role of External Water rain, subaqueous to submarine flows			
15	Measurement of Temperature -homework 8: cooling thermocouples, radiometers, FLIR, field methods			
Part 4: "Pyroclasti	ic Processes"			
Week 11				
18	Strombolian Eruptions ballistics, drag			
20	Fragmentation Processes ash, lapilli, bombs, blocks, and "JCs"			
22	Cooling and Energy Transfer in Eruption cold ash clouds, gas emissions	-homework 9: fragmentation		
Week 12 25	Vulcanian, Plinian, and Worse part 1 eruption columns, pf, base surge, fallou	t		
27	Vulcanian, Plinian, and Worse part 2 calderas, secondary processes, rheomor	-homework10: explosions phism		
***	* Thanksgiving Weekend 28-30 November	***		

Week 13 December			
	02	Pyroclastic Flow Med models, deposits	hanisms
	04	Slope Stability debris avalanche	volcanic and non-volcanic hazards
	06	Lahars volcanic vs. non-	-FINAL EXAM volcanic, types of flow, hazards
Week 14	****	American Geophysical Class cancelled, have	Union Meeting 9-13 December *** a good break!
Week 15			
	16	Volcano Monitoring 78 Organizations	AVO, seismic, remote sensing, geology
	17	Volcanic Hazards management and	mitigation, responsibilities of the science
	Stud	ent Presentations	

18

"Micro-Meeting" 12:00-14:00 (final exams due)
Student Talks/Poster Presentations

Homework Format: 3 Questions; 2 analytical (@25%), 1 qualitative (50%)

Exam Format: 10 Questions; 6 analytical (@5%), 3 qualitative (@10%), 1 fda (40%)

Final: 15 Questions; 9 analytical (@4%), 4 qualitative (@5%), 2 fda (@22%)

All assignments are take home, open book, closed neighbor.

Project:

The student will pick a physical problem relating to volcanology which has not been previously solved, and write a <3 page proposal (due October 28) for evaluation.

Suggested Additional Reading:

Part 1:

Clift, Bubbles Drops & Particles Johnson, Physical Processes in Geology Kreith and Brohn, Principles of Heat Transfer Turcotte and Schubert, Geodynamics

Part 2:

Schmincke, Volcanism Dobran, Volcanic Processes Bursik & Freundt, From Magma to Tephra

Part 3:

Kilburn & Guest, Active Lavas Fink, Lava Flows and Domes USGS Prof. Paper 1350 USGS Prof. Paper 1250 USGS Prof. Paper 1676

Part 4:

Fisher & Schmincke, Pyroclastic Rocks Sparks, Volcanic Plumes Calvari et al., Mt. Etna: Volcano Laboratory