GEOS 606 Physical Volcanology

GEOS 606 CRN 74060 3 credits

September 1th – December 17th, 2011 Mondays, Wednesdays and Fridays MWF 10:30-11:30 Irving 208 and Elvey 101

Dr. Jonathan Dehn office: WRRB 108G, lab Elvey 101

phone: 474-6499

email: jdehn@gi.alaska.edu

Office hours: Tuesday and Wednesday 3:00-5:00 pm

Texbook: Fundamentals of Physical Volcanology, Parfitt & Wilson

Class Homepage: http://classes.images.alaska.edu/geos606

Course Description:

Volcanic Processes shall be discussed in depth, relating the physics behind the processes to the outcrops in the field. In addition to homework and examinations, the student will be required to solve a unique physical problem and present the results to the class during the "micro-meeting" at the end of the semester.

Structure: 41 Class Periods total

39 Lectures total 1 Guest Lecture

1 Day of "micro-meeting"

3 Last lectures cancelled for AGU

Weekly Homework

10 separate assignments each 2% total grade

3 Exams, take-home, open book, closed neighbor

2 mid-terms 15% total grade 1 final 20 % total grade

1 Project 30% total grade

Grading: Standard A-B-C, will not include +/- due to effect on

graduate standing (i.e. B = 2.7)

Syllabus GEOS 606 Physical Volcanology FALL 2011

September	1	Introduction, Important physical variables and constants the physical approach, boundary conditions
Part 1: "Intro	oduction	a to physical processes"
Week	1	
	05	LABOR DAY, NO CLASS
	07	Statics stress and strain, properties of matter, stress distributions
	09	Dynamics -homework 1: statics how stress effects strain, fracture, propagation of movement kinematics and kinetics, classic models, internal vs. external processe
Week 2	2	
	12	Thermodynamics the 3 laws, and 3 methods of heat transfer, the phase transition
	14	Introduction to Rheology and Flow laminar vs. turbulent flows, thixotropic and power law fluids
	16	Factor Dimensional Analysis -homework 2: thermo how to brew your own models
Week	3	
Part 2: "Intri	usive Pr	ocesses"
	19	Introduction physical and/vs. chemical processes, magma generation, viscosity
	21	Stress in and Around Magma Chambers sampling a magma chamber, physical interactions
	23	How to present your results in Google Earth -homework 3: FDA John Bailey Guest Lecture
Week 4	4 26	Magma Chambers
	-0	111451114 01141110015

28 Fracture

how does magma get out of a chamber?

size and shape, over turn

October	
Week 5 03	Pipe Flow Simple models, Hagen-Poiselle, Reynolds, Rayleigh, and worse
05	Magmas & Dikes Phase differences in magma, fracturing, flow
07	Dikes, Lacoliths, and Conduits -EXAM 1: physical properties real cases, emplacement mechanisms
Week 6 10	Bubble Formation Growth & Coalescence Jessica Larsen tentative guest lecture
12	Conduit mechanics flow-type transitions, bubbles and density
14	Eruption Mechanisms -homework 5: conduits mixing, the role of volatiles, pressure, temperature and cyclicity
Part 3: "Extrusive Pr	ocesses"
Week 7 17	Measuring Subsurface Movement intro to seismicity, long period tremor, displacement, inflation
19	Fissures, Flows and Fountaining changes during eruptions
21	Flow Structures channels, levies, textures, and vesiculation -homework 6: bubbles
Week 8 24	Lava Flows pahoe hoe to a'a transition, growth of flow fields
26	Lava Domes endogenous and exogenous growth, brittle ductile transition
28	Flow Monitoring and Measurement field methods, flux -homework 7: lavas
	-project proposals due-

-homework 4: magma

30

Rate of Rise

how fast can magma move

Week 9 31	Mafic Volcanoes examine the entire primitive volcanic system			
November				
02	The Role of Viscosity and Hazards flow dynamics of domes and Merapi-type pyroclastic flows			
04	The Role of Temperature -EXAM 2: hawaiian-type higher silica contents, increase in explosivity			
Week 10				
07	The Cooling of Lavas Stefan cooling problem, lakes, flows, domes			
09	The Role of External Water rain, subaqueous to submarine flows			
11	Measurement of Temperature -homework 8: cooling thermocouples, radiometers, FLIR, field methods			
Part 4: "Pyroclastic Processes"				
Week 11 14	Strombolian Eruptions ballistics, drag			
16	Fragmentation Processes ash, lapilli, bombs, blocks, and "JCs"			
18	Cooling and Energy Transfer in Eruptions -homework 9: fragmentation cold ash clouds, gas emissions			
Week 12 21	Vulcanian, Plinian, and Worse part 1 eruption columns, pf, base surge, fallout			
23	Vulcanian, Plinian, and Worse part 2 -homework10: explosions calderas, secondary processes, rheomorphism			
**** Thanksgiving Weekend 24-27 November ****				
Week 13 28	Pyroclastic Flow Mechanisms			

models, deposits

	30	Slope Stability
		debris avalanche, volcanic and non-volcanic hazards
December		

03 Lahars -FINAL EXAM volcanic vs. non-volcanic, types of flow, hazards

Week 14

Volcano Monitoring
78 Organizations, AVO, seismic, remote sensing, geology

07 Volcanic Hazards
management and mitigation, responsibilities of the science

Student Presentations

09 "Micro-Meeting" 12:00-14:00 (final exams due) Student Talks/Poster Presentations

Week 15

**** American Geophysical Union Meeting 5-9 December ****

Class cancelled, have a good break!

Homework Format: 3 Questions; 2 analytical (@25%), 1 qualitative (50%)

Exam Format: 10 Questions; 6 analytical (@5%), 3 qualitative (@10%), 1 fda (40%)

Final: 15 Questions; 9 analytical (@4%), 4 qualitative (@5%), 2 fda (@22%)

All assignments are take home, open book, closed neighbor.

Project:

The student will pick a physical problem relating to volcanology which has not been previously solved, and write a <3 page proposal (due October 28) for evaluation.

Suggested Additional Reading:

Part 1:

Clift, Bubbles Drops & Particles Johnson, Physical Processes in Geology Kreith and Brohn, Principles of Heat Transfer Turcotte and Schubert, Geodynamics

Part 2:

Schmincke, Volcanism Dobran, Volcanic Processes Bursik & Freundt, From Magma to Tephra

Part 3:

Kilburn & Guest, Active Lavas Fink, Lava Flows and Domes USGS Prof. Paper 1350 USGS Prof. Paper 1250 USGS Prof. Paper 1676

Part 4:

Fisher & Schmincke, Pyroclastic Rocks Sparks, Volcanic Plumes Calvari et al., Mt. Etna: Volcano Laboratory