PALYNOLOGY AND PALEOPALYNOLOGY

4 Credits Prerequisites: Geos 315 *or* Biol 115

Professor: Sarah J. Fowell
Office: 326 Reichardt
Phone: 474-7810

E-mail: sjfowell@alaska.edu

Office Hours: T 11:00 -12:30 & W 1:00-2:30

Required Text:

• Traverse, A., 2008. Paleopalynology, 2nd ed. Springer, Dordrecht, 813 p. Go to amazon.com to purchase, rent, or download the Kindle Edition of this textbook.

Recommended Text:

• Moore, P.D., Webb, J.A., and Collinson, M.E., 1991. Pollen Analysis. Blackwell Scientific Publications, Boston, 216 p.

 $P_{
m alynology}$ is a field with diverse applications, which employ a wide variety of techniques.

Fundamentally, however, studies of climate change, biostratigraphy, or paleoecology all rely upon the preparator's ability to process the sample and identify constituent palynomorphs. Consequently, this course will emphasize practical skills such as identification and sample preparation. Demonstrations of new techniques will be held during the lab sessions. It is particularly essential that you attend demonstrations of laboratory procedures, as you will not be able to complete the exercise if you haven't first been introduced to the techniques. Demonstrations in the wet lab will last approximately one hour. The remainder of the lab time is available for you to work on the exercises. However, it is likely that additional time will be required in order to complete the labs. The amount of extra time you spend in lab will depend on how excited you are about palynology, but plan to invest ~4 hours/week minimum in order to learn and understand the material. The bulk of the lab work can be done whenever you please, once you have attended the demonstration.

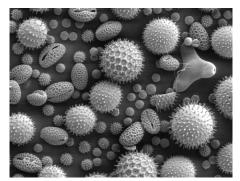
Lecture and Discussion Format: I will not spend all the time talking while you take notes! The best way to learn and retain the material is by active participation. During lectures I will encourage you to take part in class activities, including group discussions and individual "clicker questions". Your participation will be rewarded with a better grasp of the material and credit toward your participation grade. Please try to remain punctual! If you arrive late, you may miss activities that will document your presence. In other words, if you are late, you may be counted absent.

Course Objectives: The primary mission of this course is to provide you with a set of practical skills that will allow you to date a rock sample and reconstruct the climate at the time of deposition, based on constituent palynomorphs. To meet this goal, there are three primary course objectives:

1) Explore the function and morphology of pollen and spores, using modern specimens as the primary examples.

2) Examine the organic evolution of plants, from the Cambrian colonization of the land to the Cretaceous rise of flowering plants, as recorded by fossil pollen and spores.

3) Understand the relationships between temperature, precipitation and vegetation cover.


Geos 453/653 Course Syllabus

Lectures: MWF 11:45 AM –12:45 PM

233 Reichardt

Labs: T 2:00-5:00 PM

229 Reichardt

Learning Outcomes: This course places a strong emphasis on laboratory skills and microscope techniques. Class discussions will introduce and reinforce new vocabulary, while labs will allow you to practice extraction, description, and identification of modern and fossil palynomorphs. Upon completing this course, you will be able to:

- Tompare and contrast the function and morphology of pollen and spores
- Describe and illustrate modern and fossil spores and pollen grains
- Recognize and identify 20 modern North American pollen genera
- Make type slides from dried herbarium specimens
- Extract palynomorphs from sedimentary rocks and mount them for study
- Date any palynomorph-bearing sample to the correct geologic period
- Reconstruct vegetation and paleoclimate based on palynomorph assemblages

Final Project (Undergraduates) or Paper (Graduate Students):

Undergraduates: Midway through the semester, you will be given an "unknown" sample of rock from an undisclosed location. For your final project, you will process the sample, make at least two strew slides of constituent palynomorphs, photograph and identify a minimum of 5 pollen or spore species, and date the sample as precisely as possible (at <u>least</u> to the level of geologic period). At the end of the semester, you will turn in your slides, photos and names of identified palynomorphs, your age assessment, and a list of references used to make your identifications.

Graduate Students: Midway through the semester, you will have a choice of processing a suite of samples from your field area or an "unknown" rock sample from an unspecified location. Regardless of the sample type, your task will be to process the sample(s), make at least two strew slides of the palynomorphs, identify a minimum of 10 pollen species (if diversity permits), and photograph representative specimens of each taxon. Students with Pleistocene or Holocene projects will be expected to display their data in a pollen diagram. Students with pre-Quaternary samples (thesis data or unknowns) are required to date the rock(s) to the period and, if possible, age. At the end of the semester, you will turn in a paper describing your results. This paper will be a publication-quality document, including an introduction, methods, photos, paleoclimatic and/or biostratigraphic interpretations, and a complete list of references. Your microscope slides are to be submitted with the paper.

Disabilities Services: The Office of Disability Services implements the Americans with Disabilities Act (ADA) and ensures that UAF students have equal access to the campus and course materials. I will work with the Office of Disabilities Services (474-7043) to provide reasonable accommodation to students with disabilities. Please let me know if accommodations should be provided.

Course Policies: The final exam will be given only on the day and time scheduled by the university, so make travel and work plans accordingly. Make-up examinations will be given *only* under extenuating circumstances; a written explanation from your doctor or dentist will be required in the case of a medical emergency. The **Student Code of Conduct** (p. 52 in the UAF 2013-2014 Catalog) outlines your rights and responsibilities, as well as prohibited forms of conduct. Please be aware of the contents of the code.

Grading: Grades will be weighted as follows:

2 Exams: 30% (15% each) Laboratory Exercises: 30% Final Paper and/or Project: 30%

Grade Scale: Laboratory exercises, projects, and participation will be graded according to the following scale: 100-91% = A, 90% = A-, 89% = B+, 88-81% = B, 80% = B-, 79% = C+, 78-71% = C, 70% = C-, 69% = D+, 68-61% = D, 60% = D-, 60% = F. Exams and final weighted scores will be graded on a curve.

Lecture and Lab Schedule

Day	Topic	Reading	Lab Exercise	Due
Friday	Introduction: Why count pollen?	Traverse		
9/6	Applications of palynology	Chapter 2		

Part I Palynomorphs: Morphology and Function

Monday	What are palynomorphs? A survey	Traverse		
9/9	of acide-resistant microfossils	Ch 1		
Tuesday			Lab #1: The Care and	Lab 1
9/10			Feeding of Your Microscope	Lau I
Wednesday	Chemistry of sporopollenin, chitin,	Traverse		
9/11	and pseudochitin	Ch 3		
Friday	Pollen vs. spores: Form and	Traverse		
9/13	function among palynomorphs	Ch 4		

Monday	Morphology I: Apertures and	Traverse		
9/16	orientation of modern spores	Ch 5: 87-128		
Tuesday			Lab #2: "Top 50" Modern	
9/17			Spores and Pollen	
Wednesday	Morphology II: Pollen apertures –			
9/18	pores versus colpi			
Friday	Morphology III: Exine sculpture	Traverse		
9/20	and structure	Ch 5: 128-154		

Part II Land Plant Evolution and Palynostratigraphy

Monday 9/23	Precambrian acritarchs: Enigmatic marine microfossils	Traverse Ch 6: 155-173	
Tuesday 9/24			Lab #2 Continued; Lab #3: Herbarium sheets
Wednesday 9/25	Spores of the Cambrian and Ordovician: Terrestrial?	Traverse Ch 6: 173-188	
Friday 9/27	Land ho! Silurian vegetation and spores	Traverse Ch 7	

Monday	Devonian vegetation and spores:	Traverse		
9/30	Size matters!	Ch 8		
Tuesday			Lab #2 Continued;	
10/1			Lab #3: Acetolysis	
Wednesday	Megaspores, microspores, and the	Traverse		
10/2	evolution of seeds	Ch 8: 211-219		
Friday	Classification of organ fossils:	Traverse		
10/4	Potonie's turmal system	Ch 9: 229-264		

Day	Topic	Reading	Lab Exercise	Due
Monday	Wetland vegetation of the	Traverse		
10/7	Carboniferous and Permian	Ch 9: 264-273		
Tuesday			Lab #2 Continued;	
10/8			Lab #3: Making slides	
Wednesday	Road to nowhere: Spores of the			
10/9	Carboniferous and Permian	m.		
Frida	Saccate and striate morphologies:	Traverse		
10/11	Hallmarks of the Permo-Triassic	Ch 10		
Monday	Fall of the primeval forest: The	Gastaldo et		
10/14	Paleophytic/Mesophytic transition	al., 1996		
Tuesday		u1., 1550	Labs #2 Continued;	
10/15			Lab #3: Photomicrography	
Wednesday	Dinoflagellates, fungal spores and	Visscher et	8 1 7	T -1. 2
10/16	the Permian mass extinction	al., 1996		Lab 2
Friday	Triassic pollen and the evolution of	Traverse		
10/18	angiosperms	Ch 11		
Monday	Spores, circumpolloid pollen, and	Fowell et al.,		T 1 2
10/21	the Triassic mass extinction	1994		Lab 3
Tuesday			Lab #4: S-D Palynology;	
10/22			HF Safety Training	
Wednesday	Macrofossil and microfossil records	Traverse		
10/23	of the angiosperm radiation	13: 347-361		
Friday 10/25	Midterm Exam			
		•		
Monday	Cretaceous pollen I: Projectates and	Traverse		
10/28	pillboxes	13: 367-379		
Tuesday			Lab #5: C-P Palynology;	
10/29			Maceration and Dissolution	
Wednesday	Cretaceous pollen II: The	Traverse		
10/30	Normapolles group	13: 361-367		
Friday	Spores and soot: How did the K/T	Wolfe and Upchurch, 1986		
11/1	extinction affect the vegetation?	Openaren, 1900		
3.6 1	D1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T.		
Monday	Paleogene paleoclimates and floral	Traverse		
11/4	associations	Ch 14	I ob #6. Tn/I Dalymalaa	
Tuesday 11/5			Lab #6: Tr/J Palynology;	
Wednesday	The Paleocene-Eocene thermal	Brinkhuis et	Gravity Separation	
11/6	maximum	al., 2006		
Friday	Alaskan floras of the PETM	Sunderlin et		
11/8	A Maskan Horas of the Letty	al., 2011		
11/0		u1., 2011		

Day	Topic	Reading	Lab Exercise	Due
Monday	Neogene grasslands and the	Traverse		
11/11	steppe-forest index	Ch 15		
Tuesday			Lab #7: K Palynology;	
11/12			Counting Techniques	
Wednesday	Of grasslands and grazers: C3 versus	Cerling et al.,		
11/13	C4 plants	1997		
Friday	Interior floras and the Rise of the	Reinink-Smith &		
11/15	Alaska Range	Leopold, 2005		

Part III Pollen Analysis: Extracting a Climate Signal

12/11

Friday 12/13 Limitations: Recycling,

sedimentation, and preparation

Monday	Pollen production, dispersal, and	Traverse		
11/18	deposition	Ch 17, 18		
Tuesday		01117,10	Lab #8: T Palynology;	
11/19			Project Conferences	
Wednesday	Collecting data in the field: Tools	MWC		
11/20	and techniques	Ch 3		
Friday	Extracting a climate signal from	MWC		
11/22	palynological data	Ch 8		
	,			1
Monday	Constructing a pollen diagram	MWC		
11/25		Ch 7		
Tuesday			Labs 4-8 and	
11/26			Final Projects Continued	
Wednesday	Quaternary climates: Ice ages and	Traverse		Labs
11/27	marine oxygen isotope stages	Ch 16		4-8
Friday	Thanksgiving Break			
11/29	No Class!!!!!			
	T	T =		1
Monday	Mammoth diets: Pleistocene ice	Guthrie, 2001		
12/2	ages and the vegetation of Beringia		Y 1 //0 /Fili D:	
Tuesday			Lab #9: Tilia Diagrams	
12/3		5 1 1	Final Projects Continued	
Wednesday	Palynological evidence for ice-age	Brubaker et		
12/4	refugia in Alaska	al., 2005		
Friday	Vegetation of the emergent Bering	Elias & Crocker, 2008		Lab
12/6	Land Bridge	2000		9
	I m	T		1
Monday	The Younger Dryas and NADW	Broecker et		
12/9	circulation	al., 1985		
Tuesday			Final Projects Continued	
12/10	TI V D ' Al I	Γ .		T
Wednesday	The Younger Dryas in Alaska	Engstrom et		Final

al., 1990

Traverse

Ch 19

Project

Day	Topic	Reading	Lab Exercise	Due
Tuesday 12/16 10:15 AM	Final Written Exam and Laboratory Practicum			

Required Articles

- Brinkhuis, H., and others, 2006. Episodic fresh surface waters in the Eocoene Arctic Ocean. *Nature* 441: 606-609.
- Broecker, W.S., Peteet, D.M., and Rind, D., 1985: Does the ocean-atmosphere system have more than one stable mode of operation? *Nature* 315: 21-26.
- Brubaker, L., Anderson, P. M., Edwards, M.E., and Lozhkin, A.V., 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. *Journal of Biogeography* 32: 833-848.
- Cerling, T., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., and Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153-158.
- Elias, S., and Crocker, B., 2008. The Bering land bridge: A moisture barrier to the dispersal of steppe-tundra biota? *Quaternary Science Reviews* 27: 2473-2483.
- Engstrom, D.R., Hansen, B.C.S., and Wright, H.E., 1990. A possible Younger Dryas record in southeastern Alaska. *Science* 250: 1383-1385.
- Fowell, S.J., Cornet, B., and Olsen, P.E., 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. In: Klein, G. D., ed., Pangea: Paleoclimate, Tectonics and Sedimentation During Accretion, Zenith and Break-up of a Supercontinent. *Geological Society of America Special Paper* 288: 197-206.
- Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: A Late Paleozoic analog for modern global vegetational change. *GSA Today* 6 (10): 1-7.
- Guthrie, R.D., 2001. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. *Quaternary Science Reviews* 20: 549-574.
- Reinink-Smith, L., and Leopold, E., 2005. Warm climate in the Late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. *Palynology* 29: 205-262.
- Sunderlin, D., Loope, G., Parker, N., and Williams, C.J., 2011. Paleoclimatic and paleoecological implications of a Paleocene-Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. *Palaios* 26: 335-345.
- Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W., Eshet, Y., Looy, C.V., Rampino, M.R., and Traverse, A., 1996. The terminal Paleozoic fungal event: Evidence of terresrial ecosystem destabilization and collapse. PNAS 93: 2155-2158.
- Wolfe, J.A., and Upchurch, G.R. Jr., 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. *Nature* 324: 148-152.