Syllabus

1. Course Information

Title: Climate Change and My Community Course Number NRM 595P, CRN / ED 595P, CRN

Credits:

Prerequisites: Baccalaureate degree or approval of instructor

Location: University of Alaska Fairbanks, 501 IARC/Akasofu Building and nearby field

sites

Meeting Time: 8:00 am - 7:00 pm Date: 10-14 June 2019

2. Instructors: Dr. Elena Sparrow

203F Akasofu, UAF Main Campus Office hours M-F (9 am – 6 pm)

907-474-7699

ebsparrow@alaska.edu

Dr. Katie Spellman

207E Akasofu, UAF Main Campus

Office hours by appointment

907-474-1554,

klspellman@alaska.edu

Ms. Malinda Chase

415 H Akasofu, UAF Main Campus

Office hours by appointment

907-474-2768

malindac@apiai.org

Teaching Assistants: Mrs. Christine Keill and Mrs. Christina Buffingtgon

203E Akasofu, UAF Main campus Office hours M-Th (7 am – 3 pm)

907-474-2794

cekeill@alaska.edu c

3. Course Description:

Climate change influences our lives in Alaska and the changes occurring in the Arctic impact the entire planet. The Arctic & Earth SIGNs: Climate Change In My Community course is for educators, youth group leaders, and/or community members interested in learning more about the impacts and feedbacks of a warming Arctic, braiding multiple ways of knowing and observing climate change from their elders, from satellites, and from their own observations, and making a difference on a climate change issue important to their community. You and the youth you work with will collaborate with University of

Alaska Fairbanks and NASA scientists to conduct an investigation using Global Learning and Observations to Benefit the Environment (GLOBE) citizen science protocols and inquiry learning methods and use these data, satellite data, and the knowledge of community elders to inform a climate change stewardship or adaptation project in the place you live. Taking this course will engage you in a project called Arctic and Earth STEM integrating GLOBE and NASA (SIGNs), which is funded through a cooperative agreement with NASA.

4. Course Goals:

- To enhance participants' awareness of the connection between climate change and their own lives.
- To increase their understanding of the impacts and feedbacks of a warming climate on Earth system from local to global scales using multiple ways of learning and knowing (traditional ecological knowledge, inquiry-based learning, scientific investigation, etc.).
- To increase participant ability to contribute to climate change science and problem solving in their own community through the use of GLOBE or other citizen science projects, NASA and UAF science assets, and collaboration with youth, other educators, community leaders, and scientists.

5. Student Learning Outcomes:

By the end of the course, participants will have:

- An increased awareness of social-ecological changes they have observed in their own lives, which are connected to climate change, and how climate change has affected the Arctic region and the rest of the world.
- An increased resource base for culturally responsive teaching of their students, youth groups, or communities about climate change, the process of science, and data literacy.
- An increased understanding of and ability to implement the range of protocols and approaches to designing an inquiry-based investigation to address climate change-related issues in their community (including indigenous and western science learning cycles, and GLOBE or other protocols for monitoring atmosphere, soils, land cover, plant phenology, hydrology, water quality, ice, soil active layer, permafrost, and berry availability).
- Worked with elders or community leaders and experts, NASA remotely sensed data, and other information sources to identify a primary climate change-related concern for their community that they and the youth they work with might be able to work on.
- Designed and implemented an investigation with youth or community members in collaboration with a scientist to address the identified issue, and applied the data to a community stewardship or climate change adaptation project.
- Presented their project to community leaders or at a science fair or symposium, such as

the GLOBE Regional Student Research Symposium, GLOBE Learning Expedition or GLOBE virtual science fair.

6. Instructional Methods: The intensive workshop will consist of lectures, field studies, discussions, and hands-on inquiry learning activities with support/ mentoring from instructors, elders, and scientist experts. The field implementation phase will consist of participants facilitating youth collaboration with community leaders, elders, and/or scientists to design and conduct a citizen science or GLOBE investigation that can help inform the community on a key climate change challenge. The students will apply their new knowledge to some sort of stewardship project to help address the issue and communicate their data and stewardship project back to community leaders in some way.

7. Course Readings and Materials:

Texts: GLOBE. 2014. The GLOBE Program Teacher's Guide. University Corporation for Atmospheric Research. Boulder, Colorado, USA. www.GLOBE.gov

Arctic Climate Impact Assessment. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press. 140 pp.

Association of Interior Native Educators. 2017. Culturally responsive curriculum guides. https://www.ainealaska.org/curriculum-resources

Sidney Stephens. 2003. Handbook for culturally responsive science curriculum. Alaska Science Consortium and Alaska Rural Systemic Initiative. Fairbanks, Alaska. http://ankn.uaf.edu/publications/handbook/handbook.pdf

Climate Literacy: The Essential Principles of Climate Science, A Guide for Individuals and Communities. 2009, second version. www.globalchange.gov

Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science.2010. www.earthscienceliteracy.org

Course website: arcticandearthsigns.org

All materials for the course will be provided free of cost to the participants.

8. Course Calendar and Workshop Outline:

Pre-workshop Assignment:

Causes of Climate Change 101 video
What is GLOBE?
Why Observing and Monitoring matters
June 10 Homework
GLOBE clouds e-training
Download GLOBE Observer App on phone

June 11 Homework
GLOBE Soils e-Training
Download the GLOBE Data Entry App
June 13 evening
Field Trip to Permafrost Tunnel with stop at pipeline
Box Dinner Provided
June 14 Homework
GLOBE hydrology eTraining

Monday, June 10- Friday, June 14- Climate Change and My Community Workshop on the UAF Main Campus (detailed workshop content outline below) starts the course.

Monday, September 16- Project implementation plan due

Saturday, November 16, 10 AM, and/or Saturday January TBD Participate in conference call for a mid-year project check-in.

TBD- Participate in a Meet-the-Scientist session with a NASA scientist investigating a similar topic as your students, youth group, or community.

Tuesday, April 28- Project implementation must be completed and presented to community

Climate Change and My Community Workshop Outline

	Monday, June 10	Tuesday, June 11	Wednesday, June 12	Thursday, June 13	Friday, June 14
Theme	The Arctic is Changing and it has Personal to Global Implications; (Everything is connected to everything else)	Weather and Climate Are Changing	The Ground Is Changing	Plant and Animals Are Changing (species shifts, invasives, fire, landcover, phenology, subsistence foods)	Water and Fish Habitats are Changing (Rivers and lakes are changing: flooding, lake shrinkage, fish habitat)
GLOBE protocol focus	GPS, site set up	Atmosphere (temp and precip, clouds)	Pedosphere (Frost tube, soil moisture, permafrost thaw, erosion)	Biosphere (phenology, berries)	Hydrosphere (water quality- temperature, pH, dissolved oxygen, electrical conductivity, alkalinity, transparency macro- invertebrates)
Inquiry Investigation Phase Focus	Learning from Elders and Making observations	Generating questions	Designing an investigation and collecting data	Making Sense of Data & Sharing the Story	Bringing it all together communicating results
Inquiry Learnin	g/ Alaska Native Seasonal Learnii	ng Cycle Phase (cf. Stephens	s 2003) and daily activities		
Apply (Winter) Cultural expert shares	- Sam Diementieff – AK Native Elder observations of change, dangerous ice conditions	- Stanley Edwin Alaska Native scientist: Native and Western Science	- Elder Knowledge: Association of Interior Native Educators	- Alaska Interior Native Educators (AINE) plants units (Sample lessons	Read Book "When will the Salmon Come?"
knowledge	Model how to do elder interviews	perspectives on clouds and atmosphere	Curriculum units introduction-	from berry unit or medicinal plant unit) - in the field with knowledge bearer on berries	 AINE salmon unit (training in sample lessons and learning activities) Reflection from "the world is faster now

based monitoring program?

	Monday, June 10	Tuesday, June 11	Wednesday, June 12	Thursday, June 13	Friday, June 14
Explore (Summer) Students explore phenomena, observe, record data, and develop skills and knowledge	-Why Monitor? -Need for protocols – Thermometer activity -GLOBE Earth system poster - Setting up a GLOBE monitoring site	- Learning activity on clouds; -Atmosphere investigations and importance: current, minimum, maximum air temperature, cloud cover, types of clouds, precipitation (solid and liquid), pH of precipitation, surface temperature; understanding the difference between weather and climate	- Soils investigations in the field and importance: temperature (its relationship to ambient air temperature; impact of ground insulation and impact on vegetation), soil characterization, soil moisture - feedbacks between permafrost and vegetation and climate change - Practice designing a field study: collect systematic field data to address a research question of your own design using GLOBE protocols	-Do Learning Activities in the classroom - Practice GLOBE phenology protocols and Winterberry protocol and GLOBE snowpack protocol during Field exploration;	- Smith Lake hydrology protocol exploration (water quality, macroinvertebrate sampling)
Explain (Fall) Make sense of explorations through data analysis and questioning	- Ways of knowing about climate change- and reflection on teaching practices	- Practice generating testable questions based on observations, elder knowledge and satellite data. first on clouds, then on an issue of local concern; share with group;	 Practice entering and visualizing data on GLOBE website Comparison of local soil moisture observations with SMAP satellite observations (validation investigation) 	- Analyze data from field investigation and practice graphing results.	- Analyze data from Smith Lake investigation and draw conclusions. Communicate results and conclusion to the group.
Apply (Winter) Student applies and shares knowledge	- Can we monitor change or design an investigation that can help our community and also help with global climate research? How can we incorporate Western Science and Alaska Native knowledge?	- Overview of projects and implementation plan - Examples from master educators who have used the Arctic and Earth SIGNs model	Work on project ideas and implementation plan	- Share 2 concrete examples of Data into Stewardship Action K-6 examples -Work on project ideas and implementation plan	Present project ideas and implementation plan

Assess / Reflect	Pre-workshop/course assessment	2-minute write on focus	2-minute write on focus	2-minute write on focus	2-minute write on focus
(Winter)	2-minute write on focus question	question	question	question	question
Student reflects					Post-workshop/course
on experience					Assessment
Lunch Guest	Dr. David Verbyla,	- Stanley Edwin- Cloud	- Dr. Kenji Yokishawa-	- Dr. Christa Mulder	Arctic Youth Round Table
Scientist and	Impacts of Climate Change	Research in Alaska	Permafrost in our time	How does climate change	
activity	in Alaska		- Frost Tube protocol and	affect berries?	
-			tunnel man video		

9. Course Policies:

- Punctuality and attendance at the workshop is expected. Absences may be excused for legitimate reasons e.g. sickness, time conflict with other required activities, etc.
- Engaged participation and respect for instructors, guests and other participants, is expected, including closed laptops and stored digital devices unless being used as instructed for specific learning activities.
- Plagiarism will not be tolerated and will result in failing grade being given to the student.
- 10. Evaluation: Letter grades will be based on absolute scores using the rubric below. Participation during the workshop and off-campus events as well as a report will be primary evaluation artifacts. Report will consist of the following: Description of project, evidence of collaboration with elders, community members and scientists; evidence of GLOBE protocol use for data collection and data entry on the GLOBE website; photos with permission documents; evidence of project communicated to community leaders/officials.

Rubric for scoring a letter grade for NRM 595/ ED 595: Climate Change and My Community

Criteria	Score: 1	Score: 2	Score: 3
Pre-workshop assignments	Did not do any assignments (Score:0)	Completed some or partially completed assignments	Completed all assignments
Workshop Attendance	Missed one or more full day(s) of the workshop	Missed part of one day of the workshop	Present for all days of the workshop
Workshop Participation	Engaged participation in <50% of workshop	Engaged participation in 50% to < 100% of workshop	Engaged participation in 100% of workshop
Workshop homework	Did not do required GLOBE e-training (Score:0)	Partially completed required GLOBE e- trainings	Completed all required GLOBE e-trainings
Off-campus Participation	No participation in Nov or Jan audio conference check-in (Score:0)	Participation in either Nov or Jan audio conference check-in but not both	Participation in both Nov and Jan audio conference check-in
Off-campus Participation	No participation in Meet-a- NASA scientist Google Hangouts session (Score:0)		Participation in Meet-a-NASA scientist Google Hangouts session
Develop implementation plan	Did not develop a project plan or plan was submitted to instructors after 16 Sep 2019	Developed an adequate project implementation plan, and submitted before 16 Sep 2019	Developed a complete and well organized project implementation plan and submitted before 17 Sep 2018
Collaboration with elders, community, and scientists	Little evidence of collaboration with elders or local knowledge holders, community members, and scientists to develop project and communicate results	Some evidence of collaboration with elders or local knowledge holders, community members, and scientists to develop project and communicate results	Strong collaboration with elders or local knowledge holders, community members, and scientists to develop project and communicate results
GLOBE Integration	Did not use any GLOBE measurement protocol (Score:0)	Used GLOBE protocol but did not enter data on GLOBE app or website	Used GLOBE protocol and entered all data on the GLOBE app or website
Workshop evaluation responses	No response or limited response to daily workshop reflection questions, and pre- and post- evaluations	Responded adequately to daily workshop reflection questions and pre- and post- evaluations	Responded to all evaluations in a thoughtful and complete manner and included more information than required

Project Implementation	Did not implement their investigation and stewardship project by 28 April 2020	Partially implemented their investigation and stewardship project by 28 April 2020	Fully implemented their investigation and stewardship project by 28 April 2020
Project Communication	No evidence submitted of project communication to local leaders and/or scientific community by 28 April 2020	Project communicated one time or in one form to community leaders and/or scientific community by 28 April 2020	Project communicated multiple times or in multiple forms to community leaders and/or scientific community by 28 April 2020
Project Report Due 28 April 2020	Submitted After April 28, 2020 (Score: 2)	Submitted on April 28, 2020 (Score:3)	Submitted Before April 28, 2020 (Score:4)

Grades will be based on total points or scores. Most of criteria can have a total score ranging from 1 to 3, five range from 0 to 3, and one ranges from 2 to 4. The highest total score for the 13 criteria is 40.

Pass 40-29 Fail <28

- **11. Support Services:** staff will be available for follow up support through emails, phone calls and, where possible, classroom visits.
- **12. Disabilities Services:** The instructors will work with the Office of Disabilities Services (208 WHIT, 474-5655) to provide reasonable accommodation to students with disabilities.