FORMAT 1

Submit original with signatures + 1 copy + electronic copy to Faculty Senate (Box 7500). See <u>http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures-/</u> for a complete description of the rules governing curriculum & course changes.

TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:									
Department	Ttment Department of Geology and Geophysics			College/School College of Nature Mather		ural Sc ematics	cience and s (CNSM)		
Prepared by	Anupma Prakash			Phone			Extn 1897		
Email Contact	prakash@gi.a	llaska.edu		Facul Conta	ty ct		1	Anupm	a Prakash
1. ACTION DESIRED (CHECK ONE): Trial Cour			se		New C	ourse	X		
2. COURSE I	DENTIFICATION	V: Dept	GE	OS	Course #	222	No. Cred	of its	3
Justify u division number of	Justify upper/lower division status & number of credits: This course will introduce fundamentals of geospatial sciences (remote sensing, geographic information systems (GIS) and global positioning systems (GPS)) at the basic level. It is targeted for students wanting to pursue advanced courses in this area. Material (lectures and labs) are therefore targeted at a 200 level. The class meets twice a week with 11 15 mins of lecture time followed by a 45 minute lab that includes hands-on training. Lectures and the corresponding lab sessions are related to each other and are integral to the course. This contact time allocation satisfies the UAE established requirements for 3 aredits.				(remote itioning nting to os) are with 1hr des are et time dits.				
3. PROPOSED	COURSE TITLE	:]	Fundan	entals of (Geospatial	Sciences	5	
4. To be CR YES/NO	OSS LISTED?	YES	If	gyes, Dept:	GEOG	Course	e # 222	2	
(Requires signatu	approval of bo res.)	th departments	and d	eans ir	volved.	Add lines	at end c	of form	1 for such
5. To be STA YES/NO	ACKED?	No	If	yes, Dept.		Cours	e #		
6. FREQUENC	Y OF OFFERING	Every	Fall						
		Fall, S	pring, num	Summer bered 1	(Every, d Zears) — o	or Even-nu r As Demar	mbered Y nd Warrar	ears, nts	or Odd-
7. SEMESTER approved)	7. SEMESTER & YEAR OF FIRST OFFERING (if approved) Fall 2012								
8. COURSE FO NOTE: Course compressed in council. Fur- core review o COURSE FOR (check all o OTHER FORM	RMAT: hours may not the fewer than thermore, any o committee. MAT: that apply) AT	be compressed six weeks mus core course co 1	into into the appresse	fewer t oproved ed to 1 3	han three by the co ess than s	days per bllege or six weeks	credit. school's must be	Any co curri approv <mark>6 we</mark> full	urse culum ed by the eks to semester
(specify) Mode of delivery (specify lecture, field trips, labs, 75 mins of lec the whole sem				ollowed	l by 45 mir	ns of lab m	eeting tv	vice a v	week for

etc)

9. CONTACT HOURS PER WEE Note: # of credits are bas of lab in a science course minutes of practicum=1 cre the syllabus. See <u>http://w</u> number of credits.	K: 2.5 LECTUR hours/ ed on contact hours. =1 credit. 1600 minut dit. 2400-8000 minute ww.uaf.edu/uafgov/facu	E 1.5 LAB weeks 1.5 hours /week 800 minutes of lecture=1 c es in non-science lab=1 cr s of internship=1 credit. lty/cd/credits.html for mo	PRACTICUM hours /week credit. 2400 minutes redit. 2400-4800 This must match with ore information on
OTHER HOURS (specify type)	Students will spend add assignments. This non-	litional time in completing h contact time will vary by stu	nomework Idents.
 10. COMPLETE CATALOG DESCRI- less, if possible): GEOS 222: Fundamentals of 3 Credits Offered Fall This course is an introduction GIS and GPS). Fundamental computer science, data form data collection using GPS, p Prerequisites: GEOG 111 or 	IPTION including dep f Geospatial Sciences n to the principles and a concepts include electra ats, map-reading and ma hoto-interpretation, usin GEOS 101 or permissio	t., number, title and c pplications of geospatial sci omagnetic radiations, map p up-making, etc. Practical ex g image processing and GIS on of instructor. (2.5+1.5)	eredits (50 words or ence (remote sensing, rojections, basic ercises include field S software packages.
<pre>11. COURSE CLASSIFICATIONS on Page 10 & 17 of the sheet.) H = Humanities Will this course be for the baccalaureat IF YES, check which co 0 = Oral Intensive,</pre>	S: (undergraduate c manual. If justifi used to fulfill a re e core? ore requirements it W = Writin	ourses only. Use approv cation is needed, attac s = Social Sciences equirement YES could be used to fulfi g Intensive, Format 7	NO X NO X No X No X No X
12. COURSE REPEATABILITY: Is this course repeata Justification: Indic be repeated (for example, the cou theme each time). How many times may the If the course can be maximum number of cree	ble for credit? YES ate why the course of rse follows a differ e course be repeated repeated with variab dit hours that may b	NO X ian ient d for credit? ble credit, what is the be earned for this cours	TIMES Se?
13. GRADING SYSTEM: Spect	ify only one. <mark>S/FAIL:</mark>		
RESTRICTIONS ON ENROLLMENT 14. PREREQUISITES GEO These will be require 15. SPECIAL RESTRICTIONS, CONDITIONS 16. PROPOSED COURSE FEES Has a memo been submitted fee approval?	(if any) DG 111 or GEOS 101 or d before the student None None through your dean t	permission of instructor. is allowed to enroll is o the Provost & VCAS fo Yes/N	in the course.
17. PREVIOUS HISTORY Has the course been of previously?	fered as special top	pics or trial course Yes/No	No

18. ESTIMATED IMPACT

WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

Teaching this course will require a classroom that is suited for offering a lecture directly followed by a lab. The lab component will require that there are computer systems installed with freeware and some commercial software packages (ESRI's ArcGIS) for data processing. The WRRB 004 lab managed by the GINA facility is ideally suited for this and we have coordinated with GINA to ensure that this lab would be available. The computer systems in the GINA lab are already installed with ArcGIS licenses for other course offerings, and so there are no additional costs to run this class.

Offering this course will have some impacts on faculty and staff who are involved with teaching it who will have to make some changes to their current workload distribution. Course instructors and their respective unit heads (dept chairs, deans, and director) are cognizant of this, encourage and support this course offering, and are onboard to accommodate the workload adjustments required to offer this class. These workload adjustments have been possible because of new faculty hires and associated curricula changes in both related departments.

Geos /Geog 222 is now also added as a pre-requisite to some of the existing 300 and 400 level course in the Department of Geology and Geophysics and in the Geography Department, specifically GEOS 422; GEOS 458/658; GEOG 309; and GEOG 339. Paperwork for these minor changes is also being submitted in parallel by both departments.

19. LIBRARY COLLECTIONS

Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

No	Х	Yes		We have not contacted the library collection development officer specifically for this course. Elements in this course are basics of remote sensing, GIS, GPS, mapping, and visualization. These are topics that the instructors have been covering at advanced levels in
				their other courses at UAF. Both the Rasmuson library and the Keith Mather Library are more than adequately stocked with reading

20. IMPACTS ON PROGRAMS/DEPTS

What programs/departments will be affected by this proposed action? Include information on the Programs/Departments contacted (e.g., email, memo) Both the Department of Geology and Geophysics and the UA Geography Program will affected by this proposed action.

This course has been developed after extensive consultation, collaboration and focused meetings between the faculty and leadership in both departments (viz. Cary de Wit; Patricia Heiser; Dave Verbyla; Keith Cunningham; Don Atwood; Anupma Prakash; Bernard Coakley; Sarah Fowell). The purpose of these meetings was to ensure that the geospatial science course offering across the UA system were more coherent and integrated. Also, students graduating from UA with an undergraduate degree including an emphasis option in Geospatial Sciences have a consistent set of knowledge and core skills.

The group concluded that the current course offerings in geospatial sciences lacked a course on fundamental principles and skills. This course syllabus and schedule is a result of the intense brainstorming sessions. The course syllabus and outline was also presented to the wider remote sensing faculty and their input was incorporated in subsequent versions.

The deans of both the involved departments have strongly encouraged and supported the plan and efforts to bring coherence in course offerings, leveraging resources, and promoting an undergraduate emphasis option that is based on technology and is in line with the workforce needs of the State and

the nation.

21. POSITIVE AND NEGATIVE IMPACTS

```
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.
```

Positive Impacts:

- We will be able to offer effective undergraduate degrees with emphasis options in geospatial sciences.
- The course on Fundamental in Geospatial Sciences will provide the much needed basics on physical principles of geospatial sciences and will better prepare the students to take the advanced courses in this area.
- Having GEOS / GEOG 222 as pre-requisite, will raise the standards of the existing GEOS 422; GEOS 458/658; GEOG 309; and GEOG 339 classes by freeing up time to cover some advanced material and/or more hands-on training in these classes.
- Students coming out of the UA system (following the undergrad degree with emphasis option in geospatial sciences) will have a solid understanding of basic principles and consistent set of core skills in geospatial science regardless of whether they are enrolled in the emphasis within the Department of Geology and Geophysics or the UA Geography Program.

Negative Impacts:

• None known and none anticipated.

JUSTIFICATION FOR ACTION REQUESTED

The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Most departments at UAF are struggling with limited budgets, limited faculty to teach courses, and inability to offer some programs they wish to offer. The only way to overcome these challenges is by cooperating across departments (and across campuses), leveraging resources, and finding creative solutions.

This course proposal is a result of such a cooperation and collaboration between the faculty and leadership of the Department of Geology and Geophysics and the UA Geography Program. With the increasing demand from the industry in the area of geospatial science (that involves remote sensing, GIS, GPS) students in both departments are increasingly gravitating toward taking more classes in these thematic areas. Students in both departments need some common core skills, followed by some specialized application courses that are specific for the respective departments.

Therefore, after several planning meetings and extensive efforts to leverage resources, the undergraduate degree offerings in both departments were revised to include an option to take a geospatial sciences emphasis track. A common requirement for students taking this track is completion of this cross-listed course GEOS/GEOG 222 on Fundamentals of Geospatial Sciences.

As a result of these revisions and addition of this required class for geospatial science emphasis option, we are certain that the quality of the program offering will be much improved.

of this cross-listed course GEOS/GEOG 222 on Fundamentals of Geospatial Sciences.

As a result of these revisions and addition of this required class for geospatial science emphasis option, we are certain that the quality of the program offering will be much improved.

APPROVALS:

			ومسمحة المتعادية الشريك فليناك والمتعادية المتعادية والمتعادية والمتعاد
Sanh hall		Date	9/26/11
Signature, Chair,		H	
Department of Geology and			
Geophysics:			
The		Date	10/5/11
Signature, Chair, College of Nat Sciences and Machematics	ural	CNSM	
Sull Lan		Date	Oct Tron
Signature, Dean, College of Natural Sciences and	CNS	'M	
Mathematics			
		— r	
		Date	
Signature of Provost (if applica Offerings above the level of app the Provost.	able) proved programs	must be appr	coved in advance by
ALL SIGNATURES MUST BE OBTAINED I	PRIOR TO SUBMISS	SION TO THE C	GOVERNANCE OFFICE
		Date	
Signature, Chair, UAF Faculty Review Committe	Senate Curricul ee	Lum	
······································			
ADDITIONAL SIGNATURIS: (As needed	for cross-list	ing and/or s	tacking)
PINE		Date	9-23-11
Agnature, Chair, UA Geography Trogram Chair, Geog Dept;		,	
	L		8/22
1 linder - Laste			V 1770
1 minun 1	<u> </u>	Date k	Set 25 Com

Resources and Agricultural Sciences	S:		
Stol D. Somow, Assor. Da: 1	I	Date	23502011
Signature, Dean, School of			
Natural Resources and			,
Agricultural Sciences			

Syllabus for GEOS/GEOG 222 – Fundamentals of Geospatial Sciences

1. Course information:

Title:	Fundamentals of Geospatial Sciences
Number:	GEOS 222; GEOG 222
Credits:	3
Prerequisites:	GEOG 111 or GEOS 101 or permission of instructor
Location:	Lectures in WRRB Computer Lab; Room 004
	Labs in WRRB Computer Lab; Room 004
Term:	Every Fall
Meeting time:	Lectures: Monday and Wednesday, 2.00 pm to 3.15 pm
	Lab: Monday and Wednesday, 3.15 pm to 4.00 pm

2. Instructor Information (Proposed):

Fall (<mark>Odd</mark> Years – Geography-lead instructor)				
Dave Verb	yla	Donald Atwood		
Office:	O'Neill 366	Office: GI-206, UAF		
Telephone:	907-4745553	Telephone: 907-4747380		
Email:	dlverbyla@alaska.edu	Email: dkatwood@alaska.edu		
Office hrs:	ad hoc / by appointment	Office hrs: ad hoc / by appointment		
Fall (<mark>Even</mark> Years – Geology-lead instructor)				
Fall (<mark>Even</mark>	Years – Geology-lead instr	uctor)		
Fall (<mark>Even</mark> Anupma Pr	Years – Geology-lead instr akash	ructor) Donald Atwood		
Fall (Even Anupma Pr Office:	Years – Geology-lead instr akash WRRB-108E, UAF	ructor) Donald Atwood Office: GI-206, UAF		
Fall (Even Anupma Pr Office: Telephone:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897	Donald Atwood Office: GI-206, UAF Telephone: 907-4747380		
Fall (Even Anupma Pr Office: Telephone: Email:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897 prakash@gi.alaska.edu	Donald AtwoodOffice:GI-206, UAFTelephone:907-4747380Email:dkatwood@alaska.edu		
Fall (Even Anupma Pr Office: Telephone: Email: Office hrs:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897 prakash@gi.alaska.edu ad hoc / by appointment	Donald AtwoodOffice:GI-206, UAFTelephone:907-4747380Email:dkatwood@alaska.eduOffice hrs:ad hoc / by appointment		

3. Course readings/materials:

Course text book: In this class we will follow the following text book (required):

Title: Physical Principles of Remote SensingAuthor: W. G. ReesEdition: 2 edition (September 24, 2001)Publisher: Cambridge University Press;ISBN-10:0521669480ISBN-13:978-052166948

Besides this required text book, you will have access to all class power point lecture materials, lab instructions, and data sets required for your lab assignments. These will be posted on the class website. You are also encourage to refer to other books, journals and magazines available at the UAF library (see list below).

Recommended introductory books in geospatial sciences:

- *Geographic Information Systems and Science, Second Edition,* by Paul Longley, Michael Goodchild, David Maguire, and David Rhind, John Wiley & Sons and ESRI Press, 2005, 534 pages. ISBN: 047087001X.
- *GIS Fundamentals, 3rd Edition,* by Paul Bolstad, Atlas Books, ISBN: 978-0-9717647-2-9.
- *Getting to Know ArcGIS Desktop,* by Tim Ormsby, Eileen Napoleon, Robert Burke, Carolyn Groessl and Laura Bowde, ESRI Press, 2010, 604 pages. ISBN: 9781589482609.
- *Getting Started with Geographic Information Systems*, 5th edition, Keith C. Clarke, Pearson Prentice Hall, 2010, 384 pages. ISBN-10: 0131494988 | ISBN-13: 978-0131494985.

Recommended journals and magazines:

- International Journal of GIS
- International Journal of Remote Sensing
- Geoinformatics
- Geospatial Solutions
- GIS Development
- GPS World

You are encouraged to make extensive use of UAF's investment in electronic journals. Familiarize yourself on the use of *Web of Science* and the *Goldmine* database of the Rasmuson library. There is a wealth of relevant literature there.

4. Course description:

This course provides students with an introduction to the principles and applications of geospatial science (remote sensing, GIS and GPS). Fundamental concepts include electromagnetic radiations, coordinate systems and projections, basic computer science, reasoning and analytical skills, data formats, map reading and map making, and other topics. Practical exercises including field data collection using GPS, photo-interpretation, and using digital image processing and GIS software packages will reinforce theoretical discussions.

5. Course Goals and Student Learning Outcomes

<u>Goal</u>: The goal of this core course, required for the students seeking a degree with emphasis in remote sensing and GIS, is to introduce the students to the fundamental theoretical background and some practical applications of geospatial sciences. The course will prepare the students to take more advanced and specialized courses in remote sensing, GIS, GPS, and digital techniques in data analyses.

Student Learning Outcomes: By the end of the course, students will be able to

- *Understand* the fundamental principles in remote sensing imaging and geospatial data integration and analysis.
- *Search and download* relevant geospatial data required for a certain project/purpose.
- *Visually interpret* in a qualitative way a variety of images (optical, infrared, SAR) taken from airborne and satellite platforms.
- Collect and import GPS data using handheld recreational mode GPS units.
- *Project* digital data in different projection systems.
- *Compose* a simple cartographically sound map which integrates GPS data, with other geospatial data (vector data; raster maps and images).
- *Appreciate* how geospatial data can be applied in the real-world for hazard assessment, resource allocation, emergency management, change detection, and policy decision-making.

6. Instructional methods:

- 75 minute lecture followed by 45 minute lab, meeting twice a week.
- Lectures will be interactive and will involve use of power point presentations and group discussions. Material will be posted on the web if possible.
- Laboratory component will include hands-on experience with available image processing software packages.
- Reading assignments from materials provided and recommended readings on selected topics will be an integral part of the course.

7. Course calendar:

See detail class schedule (attached)

8. Course policies:

Attendance in lectures and labs is essential. For some reason, if you can not be present for a lecture or lab, please let us know in advance and make arrangements for make up of the time. Missing one lecture and lab without prior permission from the instructor will result in a loss of 3 points (3% from your final grades).

Due dates for homework assignments and lab assignments are fixed and will be printed on the homework and lab assignment sheets. Late work will be assessed a 10% reduction in score for each day late. After 7 days, late work will be given a score of zero.

Make-up tests or deferral of late penalties will be permitted only with documented proof of illness or for compassionate reasons.

We do expect all students to abide by the UAF Student Code of Conduct (see: http://www.uaf.edu/catalog/current/academics/regs3.html)

9. Grading Policy:

Your grades will be based on several factors as detailed below:

- 15%: Lecture and lab participation (see course policy above)
- 20%: Lab assignments. Most labs require that you complete the lab work in class and show the results to the instructors/TA or submit the answer sheet that accompanies the lab instructions. Make sure that you answer all questions and submit the responses by the indicated deadline (see course policy above).
- 15%: Mid-term. Your mid-term will comprise of short questions/ multiple choice answers that you will complete in class as a 'closed-book' exam.
- 30%: Two homework assignments due in late October and late November. Homework assignment will vary from year to year. Students need to answer the questions independently. Grading will be based on the completeness, comprehensiveness, and demonstrated understanding of the fundamental concepts and applications of geospatial sciences. Late work will be penalized as stated in the course policy.
- 20%: Final exam. Will be a combination of multiple choice answers and an essay type answer on the topics covered throughout the semester.

Grading index followed in this class is given below (Numerical GPA equivalence of Grades as per University Regulation R10.04.09 are indicated in parenthesis)

96-100	= A +	(4.0)
92-95	= A	(4.0)
88-91	= A-	(3.7)
84-87	= B+	(3.3)
79-83	= B	(3.0)
75-78	= B-	(2.7)
70-74	= C+	(2.3)
67-69	= C	(2.0)
63-66	= C-	(1.7)
59-62	= D +	(1.3)
55-58	= D	(1.0)
51-54	= D-	(0.7)
50>/=	= Fail	

10. Learning Support Services:

Besides access to the UAF library that has a wealth of relevant reference material, for this class you will also have access to a computer lab (West Ridge Research Building: WRRB 004) that has relevant software tools, such as Microsoft Excel, ESRI ArcGIS and Google Earth installed on the computers. UAFs OIT also maintains site license for these software packages that you will have access to if you are using a personal computer system that is on the UAF network.

11. Disabilities Services:

Should you have any special needs, please come and talk to us and we will work with you to accommodate your needs as best as possible. We will work with the UAF Office of Disability Services (208 WHITAKER BLDG, 474-5655) to provide reasonable accommodation to students with disabilities.

Class Schedule Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Week 3 Lecture 6 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 FNSB	GEOS 222 / GEOG 222 Fundamentals of Geospatial Sciences Class Schedule			
Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Lecture 6 Active and Passive Sensors Lab 5 Excel Lab with calculations Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS Analysis Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 7 Lecture 13 GIS Analysis L				
Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 11 Revision/Discussion Lab 10 Lab with PhotoScan Week 6 Lecture 13 GI				
Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 13 GIS Analysis Week 7 Lecture 13 GIS Analysis	Week 1	Lecture 1	Introduction to Geospatial Sc (RS and GIS)	
Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 7 Globes/ Balloons Lecture 8 Perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Lecture 10 Modern Ortho imaging Lab 11 Lab 10 Lab with PhotoScan Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS GIS Analysis Lab 13 Lab 12 FNSB GIS Gall Analysis Lab 13 GIS Analysis (eg. making an FCC and NDVI)		Lab 1	Google; NASA WW; Alaska Mapped	
Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 7 Globes/ Balloons Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 7 Lecture 14 DEM Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 <td< td=""><td></td><td>Lecture 2</td><td>Map Interpretation</td></td<>		Lecture 2	Map Interpretation	
Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Gand NDVI) Lecture 14 DEM Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM		Lab 2	Reading Maps	
Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lecture 14 Lecture 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 13 GIS Analysis (cg. making an FCC and NDVI)	Week 2	Lecture 3	Map Projections	
Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Lecture 10 Modern Ortho imaging Lab 11 Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lab 13 Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 14 Lecture 15 Lidar Lab 15 Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week		Lab 3	Reprojecting maps (using a global shapefile)	
Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 1 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 15 Lidar Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 16 SAR Lab 15 Global Mapper: Visualize point-clouds for Fairbanks		Lecture 4	Handheld GPS and Controls	
Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 15 Global Mapper: Visualize point-clouds for Fairbanks Lecture 15 Lidar Lab 16 MapReady Week 8 Lecture 17 Field data collection		Lab 4	Geocaching and Measurement of controls	
Lab 5Excel Lab with calculationsLecture 6Active and Passive SensorsLab 6Visual study of images from active/passive sensorsWeek 4Lecture 7Platforms (Satellites/Airborne)Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 19Use hypercube to classify Fairbanks (clustering)	Week 3	Lecture 5	Waves and EM Spectrum	
Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 15 Lidar Lab 15 Global Mapper: Visualize point-clouds for Fairbanks Lecture 16 SAR Lab 17 Map GPS points on a map Lecture 18 Cartography Lab 17 Map GPS points on a map Lecture 18 <td></td> <td>Lab 5</td> <td>Excel Lab with calculations</td>		Lab 5	Excel Lab with calculations	
Lab 6Visual study of images from active/passive sensorsWeek 4Lecture 7Platforms (Satellites/Airborne)Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 6	Active and Passive Sensors	
Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis<(eg. making an FCC and NDVI)		Lab 6	Visual study of images from active/passive sensors	
Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 4	Lecture 7	Platforms (Satellites/Airborne)	
Lecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 7	Globes/ Balloons	
Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 17Map GPS points on a mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 8	Perspectives and Scales (Nadir vs Oblique)	
Week 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 8	Examples of perspectives and scales	
Lab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 5	Lecture 9	Aerial Photography and Photogrammetry	
Lecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 9	Stereoscopy lab	
Lab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 10	Modern Ortho imaging	
Week 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 10	Lab with PhotoScan	
Lab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 6	Lecture 11	Revision/Discussion	
Lecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 11	Mid term exam	
Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 12	GIS concepts (raster, vector, database)	
Week 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 12	FNSB GIS	
Lab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 7	Lecture 13	GIS Analysis	
Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 13	GIS Analysis (eg. making an FCC and NDVI)	
Lab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 14	DEM	
Week 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 14	ArcGIS to compute SRM, Slope, Aspect, HillShade	
Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Lab 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 8	Lecture 15	Lidar	
Lecture 16 SAR Lab 16 MapReady Week 9 Lecture 17 Field data collection Lab 17 Map GPS points on a map Lecture 18 Cartography Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 15	Global Mapper: Visualize point-clouds for Fairbanks	
Lab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 16	SAR	
Week 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 16	MapReady	
Lab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Lab 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 9	Lecture 17	Field data collection	
Lecture 18 Cartography Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 17	Map GPS points on a map	
Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lecture 18	Cartography	
Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 18	Add WMS base to earlier map	
Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)	Week 10	Lecture 19	Spectral Signatures	
Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 19	Use hypercube to play with RGB	
Lab 20 Use hypercube to classify Fairbanks (clustering)		Lecture 20	Landcover Mapping	
		Lab 20	Use hypercube to classify Fairbanks (clustering)	
Week 11 Lecture 21 Change Detection	Week 11	Lecture 21	Change Detection	
Lab 21 Use Arc GIS for change detection (Amazon)		Lab 21	Use Arc GIS for change detection (Amazon)	
Lecture 22 Applications of Change detection		Lecture 22	Applications of Change detection	

	Lab 22	Several examples (coastal; urban; thermal; wetland)
Week 12	Lecture 23	Thanksgiving
	Lab 23	Thanksgiving
	Lecture 24	Thanksgiving
	Lab 24	Thanksgiving
Week 13	Lecture 25	Cadastral Applications
	Lab 25	Cadastral Lab with Arc GIS
	Lecture 26	Public Safety; Emergency Management
	Lab 26	Vehicle routing lab
Week 14	Lecture 27	Flooding / Landslides
	Lab 27	Inundation Analysis (H&H modeling)
	Lecture 28	Final Exams
	Lab 28	Final Exams