PETE/GEOS 646

Petroleum Geology

3 credits

Hydrocarbons fuel today's economy, but remain a relatively rare natural resource. The objective of this course is to review the geologic controls on the distribution and accumulation of hydrocarbons, how those hydrocarbons are found, and how they are subsequently extracted. At the end of the course, students should be able to explain:

- the subsurface environment
- the origin and nature of hydrocarbons
- how and where hydrocarbons accumulate
- methods of hydrocarbon exploration and exploitation
- unconventional hydrocarbon resources
- basic reservoir engineering techniques

Examples from classic hydrocarbon-producing regions will be used to illustrate the principles and techniques discussed in class.

Students will be assigned additional readings each week that expand on the topics discussed in class. Students will then use the concepts and techniques discussed in both the class and the readings to research a petroleum topic related to their own area of research. Results will be summarized as a paper and presented to the class as a short presentation.

Prerequisites: Graduate standing or permission of the instructor

Instructor: Cathy Hanks, NSB 346/Duckering 417, 474-5562 or 2668 chanks@gi.alaska.edu

Office Hours: TBD

Text: Selley, 1999, Elements of Petroleum Geology. Academic Press, 470 p.

Additional readings will be assigned each week to augment the lectures.

Class format:

The class will consist of lectures and homework assignments. Additional readings will be assigned each week to augment the lecture material given in class.

Grading Policy

The course grade will be a letter grade (plus, minus) and will be based on:

• 2 mid-term exams (20% each)

- final exam (20% each)
- homeworks (20%)
- final project paper & oral presentation (20%)

Students will meet with the instructor during the first 2 weeks of class to determine the topic of the research project. The results of the project will be presented as an 8-10 page research paper, and in a 10 minute oral presentation to the class. Both papers and oral presentations will be graded on technical content and quality of presentation.

Grades will be assigned as follows:

 $\begin{array}{l} A+=97\text{-}100\%\\ A=93\text{-}96\\ A-=90\text{-}92\\ B+=87\text{-}89\\ B=83\text{-}86\%\\ B-=80\text{-}82\\ C+=77\text{-}79\\ C=73-76\%\\ C-=70\text{-}72\\ D+=65\text{-}69\\ D=55\text{-}64\%\\ D-=50\text{-}54\\ F=<55\%\\ \end{array}$

The instructor reserves the right to curve the grades where appropriate.

Late homeworks will not be accepted.

COURSE OUTLINE: (28 CLASS DAYS)

Week	Торіс	Homeworks	Readings
1	Intro—Why petroleum?		
	What is Petroleum?		Selley Ch. 2
	Organic vs. inorganic origin of		
	petroleum		
	Chemical Properties		
	Physical Properties		
2	The subsurface environment	Hwk 1: Calculating	Selley, Ch. 4
	• Temperature within the earth	geothermal	
	• Pressure	gradients	
	Subsurface waters		
	Methods of Exploration	Hwk 2: Rock id	Selley, Ch. 3.1, 3.2,
	• Drilling a well		3.5
	Well logging		

3	Subsurface geology and mapsFormation Evaluation	Hwk 3: Examining well cuttings and well logs	
	Gravity and Magnetics		
4	 Geophysical methods—Reflection Seismicacquisition 	Hwk 4: Interpreting seismic	Selley, Ch. 3.3
	• Seismic interpretation, 3 D, 4D		
5	The source: How oil forms		Selley, Ch. 5
	Source rock characteristics		
	• Productivity and Preservation of		
	Organic Matter.		
	Hydrocarbon Maturation		
	Hydrocarbon Migration		
	Midterm I		
6	The Reservoir:	Hwk 5: Evaluating	Selley, Ch. 6.1-6.7
	What makes a good reservoir rock?	porosity and	
	• Porosity.	permeability in	
	Permeability.	hand samples	
	 Effects of Diagenesis on Reservoir Quality. 		
	Measuring reservoir properties		
	• Lab measurements		
	 Log evaluations 		
7	Reservoir Continuity—the		
	importance of depositional		
	environment:		
	 Variations due to sed 		
	structure		
	 Mesoscopic and map scale 		
	variations		
	• Carbonate depositional systems: a	Hwk 6: Correlating	
	different beast	logs; Constructing	
		subsurface isopach	
8	• Decompoir prediction in the	maps Hwk 7: Sequence	
0	• Reservoir prediction in the subsurface: the importance of	stratigraphic	
	sequence stratigraphy	interpretation of	
	sequence stratigraphy	seismic data	
	Traps and Seals:		Selley, Ch. 7
	• Nomenclature of a Trap.		
	• Distribution of Petroleum within a		
	Trap.—Gas, oil, water		
	• Characteristics of Seals and Cap		
	Rocks.		

9	 Trap types: Structural Traps. Stratigraphic Traps. Combination Traps. Hydrodynamic Traps. Salt-related structures 	Hwk 8: Constructing subsurface structure maps; Identifying play types from subsurface structure maps	
10	Midterm II		
	• Structural modifications of a reservoir: Fractured reservoirs		
11	 Timing of Trap Development Relative to Migration. Petroleum systems & plate tectonic habitat Passive continental margins Passive continental margins, cont 	Hwk 9: Using seismic data for structural interpretation and timing	Selley, Ch. 8
12	Convergent marginsStrike slip basins	Hwk 10: Plate tectonic setting of modern day basins	
	Reservoir engineering: • Reserve calculations	Hwk 11: Simple reserve calculation	Selley, Ch. 6.8-6.9
13	Well Drilling and Completion		
	Non conventional hydrocarbon resources• Viscous oil• Gas hydrates• Coal bed methane		
14	Tight gasShale resource plays		
	Student presentations		

Course Policies: Attendance at class is your responsibility. Students are responsible for making up any missed work. Students are encouraged to arrive to class on time. Make-up examinations will be held only under exceptional circumstances (e.g. illness, family crises, etc.). Medical documentation will be required to confirm illnesses. We follow the university guidelines for plagiarism/academic integrity as outlined in the current UAF catalog (p. 71-72).

Disability Services: The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. We will work with the Office of Disabilities Services (208 Whitaker Building, 474-5655) to provide reasonable accommodation to students with disabilities.