
Sample Syllabus for GEOS 436/636

The remainder of this file based on the actual syllabus for the current trial version of the course, which
is being offered as GEOS 692. The trial course was developed collaboratively by Freymueller and
graduate student Ronni Grapenthin – in fact, the course was Grapenthin’s brainchild. The results of the
trial courses have been significant enough that we aim to integrate it into the curriculum as a formal
course with a permanent instructor. More information about the course is available online:

http://www.gps.alaska.edu/programming/

The 2010 version of the trial course is also online:

http://www.gps.alaska.edu/programming_2010/

That version includes the lecture presentations in PDF format for the entire semester, as they were
delivered in Fall 2010. A 2009 version is also available. Some selected material is included in PDF
form. The trial course was not stacked and was offered pass/fail. One undergraduate took it in Fall
2011, which was useful in helping calibrate expectations. The syllabus here has been modified from the
originally submitted version to better develop the stacked undergraduate version of the course and to
incorporate feedback from the Faculty Senate. The main changes were to be more specific about the
expectations for project, and to make a clearer separation between the work assigned and expectations
for undergrads taking it as 436. Flexibility in the project is beneficial for the students, so keeping that is
important. The students are more excited about the project and learn more when it is directly helping
them do something they need to do for their research. That means there are many styles of projects, and
these have been listed now in the syllabus so students can see what the expectations are. My hope is
that they will do more than the minimum because that advances their research, but that is up to them.
The structure of the lab and homework assignments is not conducive to having undergraduates do
different or simpler assignments or only do a part of each assignment, and in reality there is no reason
they should not be able to do these as well as the grad students. So the main difference is that the
undergrads have a much simpler final assignment, which is just to present something they have done in
the lab rather than to do independent work like the graduate students are expected to do.

Why a stacked course?

This course was originally conceived as a course to teach skills needed by graduate students to do
research in today’s scientific world. We have found that an increasing number of our graduate students
lack these skills. There is a clear trend in our applicant pool over the years. It appears that students in
geosciences do not learn computer programming unless they once intended to be in computer science,
and then changed over to geosciences. In fact, most incoming students today have never interacted with
a computer except through a modern graphical interface, and we find that some students have never
even thought about giving commands to a computer in any other way. Reaction to the article Ronni
Grapenthin and I published in the American Geophysical Union’s newspaper (attached) shows that this
is not specific to geosciences or to UAF.

If our incoming grad students are like this, then the same probably applies to our graduating seniors.
This prompted the decision to stack the course. The intention is to offer the course to seniors with the
goal of making them more competitive in terms of their skill set if they intend to move on to graduate
school or do some other form of research after graduation (or before). The pre-requisite of senior
standing should accomplish this, and avoid mixing graduate students with much younger, less mature
and less serious undergrads. Undergraduates involved in or eager to do undergraduate research would
also be good candidates, and could be added with permission of instructor if they were not yet seniors,
assuming space is available.

GEOS 692: Beyond the Mouse 2011 – Programming and Automation for Geoscientists (2 Cr.)

"Programming is legitimate and necessary academic endeavor."
Donald E. Knuth

Instructors:

Ronni Grapenthin Jeff Freymueller
Geophysical Institute Geophysical Institute
University of Alaska Fairbanks University of Alaska Fairbanks
903 Koyukuk Drive, P.O. Box 757320 903 Koyukuk Drive, P.O. Box 757320
Fairbanks, Alaska 99775-7320 Fairbanks, Alaska 99775-7320
office: Elvey 413H office: Elvey 413B
hours: by appointment hours: by appointment
email: ronni@gi.alaska.edu email: jeff.freymueller@gi.alaska.edu
phone: +1 (907) 474 – 7428 phone: +1 (907) 474 – 7286

Overview:

In the (geo)sciences – as in many other disciplines – we collect data which need to be
analyzed in ways that depend on the problem posed. The ability to modify your working
environment according to your needs instead of having it dictate how you approach a problem
is invaluable. This is especially true in a setting that is supposed to generate fresh knowledge.
Also, and this may be even more important, we are lazy people. We do not want to waste
time by repeating the same steps again and again, and ... again. Such boredom causes
errors. And being bored by such routines is totally legitimate. A computer (the machine, and
earlier the person) exists to perform such routines rapidly, reliably and repetitively: It takes in
data, manipulates the data following your commands (YEAH!), and produces a result. The
point of writing computer programs is to automate an intellectual challenge that has been
solved and make it reusable at all times - for yourself and ideally for others. 21st century
scientific research frequently involves manipulation or analysis of very large data sets, or the
development of numerical models; this work can only be used effectively by scientists who
can make software tools themselves. Accordingly, the geophysics graduate curriculum now
expects students to be able to write simple computer programs. This course will teach you the
basic techniques and skills to do this.

The class will meet for one lecture and one lab every week for 14 weeks.

What this course is:

The intent is to teach you how to make simple tools that will allow you to read in and massage
data in exactly the way you want, and plot or visualize the results. We will start out
manipulating your thinking, introduce you to programming in general, and then take off into
specific working environments namely Unix/Linux and Matlab while teaching you how to map
your data using GMT and create simple web pages by writing the HTML yourself. All of this is
easier than you might think – you simply have to get up over the initial part of the learning
curve. We will cover many things in a short amount of time, which means that we will give you
many pointers that you can follow up on depending on your needs. There is a tremendous
amount of reference material (and examples to adapt) available on the web. We encourage
you to play with the tools we are teaching you to use beyond the course assignments, and do

things with them that are fun for you. The more you do, the more you will learn.

What it is not:

Complete.

Prerequisites:

GEOS 436: Senior standing or permission of instructor.

GEOS 636: Graduate standing.

Textbook:

No textbook exists for this course. Handouts and lecture slides will be provided, and we will
guide you to some of the many reference sources available on the web.

Student Learning Outcomes:

By actively participating in this course you will become significantly more proficient at:

 Breaking problems down into a series of steps

 Organizing data and tools to make automated work easier

 Writing and understanding how to read computer programs in MATLAB

 Writing and understanding how to read Unix/Linux shell scripts

 Making publication-quality maps and figures using GMT (Generic Mapping Tools)

 Using HTML and CSS for web pages

Grading:

This 2 credit class is pass/fail. The class assignments are primarily lab exercises, specifically
computer programs written in the computer lab. We use software that is available to students
at no cost (for use within the UAF network), so all students could also install and use it on
their own computer if they wish. The computer lab is also available for students to use at
other times, if they need to finish an assignment outside of lab. During the first third of the
semester, additional short homework assignments will be given outside of lab (these do not
require any particular computer or software).

Grading is based on weekly lab exercises, homework assignments, a final project, and the
presentation of that project in the form of a web page or pages. There will be a total of 12
graded lab assignments, equally weighted, and all other assignments except for the final
project itself are scored points equivalent to a lab assignment or a fraction of that.

Graduate Students

Labs+Homework+Project Presentation 70% of total
Each Lab assignment 1 Lab
Each Homework assignment 1/2 Lab
Final Project Presentation 1 Lab

Final Project 30% of total
Passing (graduate) >= 65%

Undergraduate Students

Labs+Homework+Final Presentation 100% of total
Each Lab assignment 1 Lab
Each Homework assignment 1/2 Lab
Final Presentation 1 Lab
Passing (undergraduate) >= 65%

Attendance and activity in class will be taken into consideration to raise the grade by small
amounts, if necessary and justified.

The homework and lab exercises consist of basic application of methods and practices
presented in class. The labs help you apply things taught in class. The complexity of the labs
varies. Usually they consist of a simple introduction problem to get you used to the
environment, understand new commands, etc. In a second part you will apply this in a slightly
more complex way to data, or simply write more complex code.

The final project will (hopefully) be specific to your research project. We want to encourage
you to set up an efficient and safe environment in which you apply the methods and tools
introduced in class.

Graduate students are expected to carry out a complete project within their own field of
specialization (this can and should be something that helps them in their own research). The
project will be presented in the form of a web page or pages, for which the student will write
the HTML using the templates provided in class and used in one of the labs. Undergraduates
will substitute a presentation of some of their own work from the labs in place of an
independent project, also presented in the form of a web page or pages.

There are several styles of project that a student could take on, depending on their needs.
Flexibility in this regard is beneficial for the students, as they learn more by doing more, and
do more when they are excited about and see the relevance of the project. The project must
be implemented in code using one of the tools used in the class (or a different tool with
instructor permission). The students must turn in complete code, raw data files, etc, so that
the instructor could run their code and replicate their results. Code must be adequately
commented. All of the code and data files should be linked on the web page or pages.

Sample projects include one of these, at a minimum: (a) reading in data and doing useful
manipulation and visualization of the data; (b) constructing a coherent suite of scientific
figures or visualizations of data; (c) developing and running a numerical model; (d) writing a
program or programs to automate a task that must be done repeatedly (for example, a data
processing or analysis task), and using this program to run a substantial amount of data.

(Graduate students only) In the beginning of the semester you will provide us with a snapshot
of your project directory (If you have one). Send rudimentary data files, and any
scripts/programs should be executable. You will do the same at the end of the term through
your final project, and tell us how you improved or changed the organization to make working
with your data easier to automate. If your project involved doing something totally new, you

will tell us why you chose to organize things as you did.

Policies and makeup-labs:
You are subject to the UAF Student Code of Conduct
(http://www.uaf.edu/catalog/current/academics/regs3.html). We will work with the Office of
Disabilities Services (203 WHIT, 474-5655) to provide reasonable accommodation to student
with disabilities. Makeup versions of labs will be provided if we have a convincing reason to
do so. The makeup must occur prior to final project presentations.

Schedule:

The class meets: Mon (lecture+lab) + Tues (lab) 3:30-5:30 pm in REICH 316.

Sep 08 Introduction
Jeff Freymueller , Ronni
Grapenthin

Sep 12,13 Lecture 1: Thinking Programs Ronni Grapenthin
 Lab 1: Organizing your ideas

Sep 19,20
Lecture 2: Fundamental Programming
Principles I:
Variables and Data Types

Ronni Grapenthin

 Lab 2: Matlab and Variables

Sep 26,27
Lecture 3: Matlab I: (Advanced) Variables and
functions

Jeff Freymueller

 Lab 3: Matlab structs and functions

Oct 03,04
Lecture 4: Fundamental Programming
Principles II:
Control Structures

Ronni Grapenthin

 Lab 4: Matlab flow control
Oct 10,11 Lecture 5: Matlab I/O I Ronni Grapenthin
 Lab 5: Matlab I/O I (files)
Oct 17,18 Lecture 6: Matlab I/O II Ronni Grapenthin
 Lab 6: Matlab I/O II (plotting)
Oct 24,25 Lecture 7: Unix Tools I Jeff Freymueller
 Lab 7: Unix Tools
Oct 31, Nov
01

Lecture 8: Unix Tools II Jeff Freymueller

 Lab 8: Unix Tools
Nov 07,08 Lecture 9: Live Shell Scripting Ronni Grapenthin
 Lab 9: Unix Tools
Nov 14,15 Lecture 10: Debugging Ronni Grapenthin
 Lab 10: Debugging
Nov 21,22 Lecture 11: GMT I Bernie Coakley
 Lab 11: GMT – Data mapping
Nov 28,29 Lecture 12: GMT II Bernie Coakley
 Lab 12: GMT – Data mapping

Dec 5-12 Independent Study: HTML Ronni Grapenthin

Lab 13: Setting up a website for project
presentation

Prior to each lecture you will find handouts, examples, and problem sets here. The problem
sets are supposed to get you started poking around on your system and/or change the way
you approach problems. The handouts will form some sort of mini-handbook that could be
placed next to your computer.

Mailing List:
To discuss issues with labs, projects and general programming issues with your fellow
students, we set up the mailing list:
btm2011@gi.alaska.edu
Please sign up at http://dogbert.gi.alaska.edu/mailman/listinfo/btm2011 and use this list first to
ask your questions.

Notes:
If you do not have access to a unix-linux-mac environment, we recommend that you install a
similar setup on your own computer, like we'll have in the lab. We will also have a Linux-
based computer that you can access remotely, and post your project webpages on. We will
use virtualbox as a virtualization software which allows to run, say, a linux distribution within a
running Windows (no rebooting required). Once virtualbox is installed you need to put a linux
distribution of your choice (maybe ubuntu) on top of this. See Ronni (ronni <at> gi <dot>
alaska <dot> edu) if you need help with that.

