Predicting landscape vulnerability to non-native plants using a CART model in Interior Alaska

M. Aisu¹, E.J. Trammell¹,³, M.L. Carlson¹,², and F.D. Witmer⁴

¹Alaska Center for Conservation Science, ²Biological Sciences Department, ³Geography and Environmental Science, ⁴Computer Science and Engineering Department, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508

Alaska has been “The Last Frontier” for invasive plants due to cold climate and geographical isolation from population centers; however, the recent rapid inflow of non-native plant species is raising concerns. Although several studies have been conducted to predict the distribution and potential impacts of non-native plants in Alaska, a comprehensive model that considers all non-native plant species in Alaska with multiple factors that potentially affect plant invasion (climate, habitat condition, and anthropogenic infrastructure) has not been made. The purpose of this study is to identify (1) which factor or combination of factors among climate, habitat, and anthropogenic infrastructure make the landscape ecologically vulnerable to plant invasion in interior Alaska, and (2) where are the areas that are most at risk for plant invasion currently and in the future (2020s and 2060s). The hypothesis is that the anthropogenic land use would be the most influential factor. These objectives were addressed by constructing a decision tree (CART model) that classifies a multitude of climate, habitat, and anthropogenic variables based on how they interact with the current non-native plant distribution. The model suggested that anthropogenic land use is the single most influential factor, followed by two climate factors, summer warmth index and January precipitation. While few changes are expected in the near future, more substantial changes are anticipated in the long-term future. Western Alaska needs a long-term management strategy as it is currently undersampled and predicted to experience a rapid expansion in human population and plant invasion by 2060s.
Predicting landscape vulnerability to non-native plants in central Alaska

Megumi Aisu
University of Alaska Anchorage
Alaska Center for Conservation Science

Acknowledgement: Dr. Jamie Trammell, Dr. Matt Carlson, Dr. Frank Witmer
Funded largely by: BLM
Introduction:
Why does Alaska have less of a weed problem than most other states?
Introduction:
Why synthetic approach?

• Invasion ecology is complex and idiosyncratic
• Multi-species
• Multivariate
• Landscape approach
Introduction: Objectives

1. Identify the climate, habitat, or anthropogenic factors that make the landscape more vulnerable to plant invasion
2. Predict the critical areas for invasion control in 2020s and 2060s
Methods:
Study Area
Methods: Overview

- Objective 1 (Identify factors for invasion)
 - Classification and Regression Tree (CART) analysis
- Objective 2 (Predict the critical areas)
 - Mapping
Methods: Objective 1
Why use CART?

• CART uses a decision tree to make a prediction model by splitting values of predictor variables
 • Handles collinearity among predictor variables
 • Accounts for non-linear relationships
 • Flexibility of input data format
 • Tree-based diagram is easy to interpret
Methods: Objective 1
Response Variables

• Merged non-native plant database by watersheds
 • Alaska Exotic Plants Information Clearinghouse (AKEPIC)
 • Consortium of Pacific Northwest Herbaria (includes ALA, UAAH, etc.)
 • Toolik Field Station Herbarium

• Created a “weediness” index by watersheds
 • quantify the levels of invasive plants risk
 • Watersheds are “infested” if they have at least one highly invasive species and at least 10 non-native species
Methods: Objective 1
Predictor Variables

- 10 climate
- 4 habitat
- 7 human variables
- Summarized by watersheds

<table>
<thead>
<tr>
<th>Name of Independent Variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Annual Precipitation in each watershed (mm)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean Annual Temperature (°C)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean January Precipitation (mm)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean January Temperature (°C)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean July Precipitation (mm)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean July Temperature (°C)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean Date of Thaw (Julian Days)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean Date of Freeze (Julian Days)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean Summer Warmth Index</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Mean Length of Growing Season (Days)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Percent Area of Permafrost (%)</td>
<td>SNAP, UAF</td>
</tr>
<tr>
<td>Density of Rivers (m/m²)</td>
<td>ADNR</td>
</tr>
<tr>
<td>Variety of Landcover Coarse Classes</td>
<td>AKNHP, UAA</td>
</tr>
<tr>
<td>Variety of Landcover Fine Classes</td>
<td>AKNHP, UAA</td>
</tr>
<tr>
<td>Percent of Human Developed Areas (%)</td>
<td>USGS</td>
</tr>
<tr>
<td>Total Population</td>
<td>U.S. Census</td>
</tr>
<tr>
<td>Total Income ($)</td>
<td>U.S. Census</td>
</tr>
<tr>
<td>Density of Highways (m/m²)</td>
<td>ADNR</td>
</tr>
<tr>
<td>Density of Secondary Roads (m/m²)</td>
<td>ADNR</td>
</tr>
<tr>
<td>Density of Trails (m/m²)</td>
<td>ADNR</td>
</tr>
<tr>
<td>Traffic Volume on Highways and Secondary Roads (Veh/Day)</td>
<td>ADTPF</td>
</tr>
</tbody>
</table>
Results: CART model

Kappa = 0.57
Results:

Current Landscape Vulnerability

Current Invasive Vulnerability in Interior Alaska

- High Infestation Vulnerability
- Potentially Low Infestation Vulnerability
- Potentially High Infestation Vulnerability
- Low Infestation Vulnerability

Survey Footprints (including the Absence Data)
Results:
Near Future
Landscape Vulnerability (2020s)
Results:
Long Future Landscape Vulnerability (2060s)
Results:
Changes in Vulnerability Status by 2060s

Changes in Vulnerability Status by 2060s
- Red: Watersheds in need of high priority (change in vulnerability status more than 2 steps by 2020s)
- Pink: Watersheds that are predicted to change in the vulnerability status by 2060s
- Yellow: Controlled Sites

[Map of Alaska showing changes in vulnerability status by 2060s]
Results:
Minimum Condition of Climate

Minimum Condition of Summer Warmth Index by 2060s
- Summer Warmth Index less than 37.25°C
- Summer Warmth Index greater than 37.25°C

Current (2010s)
Near-Term Future (2020s)
Long-Term Future (2060s)

Percentage Area
- Less than 37.25: Current (2010s) 80.9%, Near-Term Future (2020s) 79.1%, Long-Term Future (2060s) 71.3%
- Greater than 37.25: Current (2010s) 19.1%, Near-Term Future (2020s) 20.9%, Long-Term Future (2060s) 28.7%
Summary

• We integrated the relationships among non-native plants and climate, habitat, and anthropogenic factors.
• Percent developed area is most important for explaining the potential for watersheds being infested. Climate is secondarily important.
• There are 11 watersheds that are predicted to have a big change by near future.
• Watersheds in west Alaska would need long-term monitoring.